Citation: | LI Kaibin, LIU Fupeng, MA Shuaibing, CHEN Feixiong. Selective roasting transformation to extract lithium from LiNi0.815Co0.15Al0.035O2 anode material of waste Tesla battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 40-50. DOI: 10.13264/j.cnki.ysjskx.2023.01.006 |
[1] |
SWAIN B. Recovery and recycling of lithium: a review[J]. Separation & Purification Technology, 2017, 172: 388-403.
|
[2] |
SONOC A, JESWIET J. A Review of Lithium supply and demand and a preliminary investigation of a room temperature method to recycle lithium-ion batteries to recover lithium and other materials[J]. Procedia CIRP, 2014, 15: 289-293. doi: 10.1016/j.procir.2014.06.006
|
[3] |
ALEXANDRU, SONOC, JACK, et al. Opportunities to improve recycling of automotive lithium ion batteries[J]. Procedia Cirp, 2015, 29: 752-757. doi: 10.1016/j.procir.2015.02.039
|
[4] |
GRUBER P W, MEDINA P A, KEOLEIAN G A, et al. Global lithium availability[J]. Journal of Industrial Ecology, 2011, 15(5): 760-775. doi: 10.1111/j.1530-9290.2011.00359.x
|
[5] |
林若虚. 锂离子电池正极材料简介及标准布局浅析[J]. 中国金属通报, 2021(8): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB202108053.htm
|
[6] |
李方昊, 杨建元. 废旧锂电池正极材料回收研究进展[J]. 现代化工, 2021, 41(1): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG2021S1019.htm
|
[7] |
MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. doi: 10.1016/j.hydromet.2014.10.012
|
[8] |
A T T, A D S, C H O, et al. Distributions of lithium-ion and nickel-metal hydride battery elements in copper converting[J]. Journal of Cleaner Production, 2017, 168: 399-409. doi: 10.1016/j.jclepro.2017.09.051
|
[9] |
ZHENG Y, SONG W, Mo W T, et al. Lithium fluoride recovery from cathode material of spent lithium-ion battery[J]. RSC Advances, 2018, 8(16): 8990-8998. doi: 10.1039/C8RA00061A
|
[10] |
ZENG X, LI J, SINGH N. Recycling of spent lithium-ion battery: a critical review[J]. Critical Reviews in Environmental Science & Technology, 2013, 10(44): 1129-1165.
|
[11] |
ZHANG X, XIE Y, LIN X, et al. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries[J]. Mater. Cycles Waste Manage, 2013, 15(4): 420-430. doi: 10.1007/s10163-013-0140-y
|
[12] |
HEYDARIAN A, MOUSAVISM, VAKILCHAP F, et al. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries[J]. Journal of Power Sources, 2018, 378: 19-30. doi: 10.1016/j.jpowsour.2017.12.009
|
[13] |
TIRRONEN T, SUKHOMLINOV D, OBRIEN H T, et al. Distributions of lithium-ion and nickel-metal hydride battery elements in copper converting[J]. Clean. Prod, 2017, 168: 399-409. doi: 10.1016/j.jclepro.2017.09.051
|
[14] |
周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202201007.htm
|
[15] |
XIN Y, GUO X, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258. doi: 10.1016/j.jclepro.2016.01.001
|
[16] |
DUTTA D, KUMARI A, PANDA R, et al. Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium ion batteries[J]. Separation and Purification Technology, 2018, 200: 327-334. doi: 10.1016/j.seppur.2018.02.022
|
[17] |
ORDONEZ J, GAGO E J, GIRARD A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 195-205. doi: 10.1016/j.rser.2015.12.363
|
[18] |
陈艳, 胡显智. 电子废料中贵金属的回收利用方法[J]. 中国矿业, 2006(12): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200612030.htm
|
[19] |
TORKAMAN R, ASADOLLAHZADEH M, TORAB MOSTAEDI M, et al. Recovery of cobalt from spent lithium-ion batteries by using acidic and basic extract ants in solvent extraction process[J]. Separation and Purification Technology, 2017, 186: 318-325. doi: 10.1016/j.seppur.2017.06.023
|
[20] |
CHEN M, WANG R, QI Y, et al. Cobalt and lithium leaching from waste lithium-ion batteries by glycine[J]. Journal of Power Sources, 2021, 482: 228942. doi: 10.1016/j.jpowsour.2020.228942
|
[21] |
MUSARIRI B, AKDOGAN G, DORFLING C, et al. Evaluating organic acids as alternative leaching reagents for metal recovery from lithium-ion batteries[J]. Minerals Engineering, 2019, 137: 108-117. doi: 10.1016/j.mineng.2019.03.027
|
[22] |
崔鹏媛, 俞小花, 冯天意, 等. 废旧三元锂电池正极材料的回收再生研究[J]. 有色金属工程, 2022, 12(6): 151-159. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS202206019.htm
|
[23] |
QUIJADA-MALDONADO E, OLEA F, R SEPúLVEDA, et al. Possibilities and Challenges for ionic liquids in hydrometallurgy[J]. Separation and Purification Technology, 2020, 251: 117289.
|
[24] |
YADAV D, BANERJEE R. A comparative life cycle energy and carbon emission analysis of the solar carbon thermal and hydrometallurgy routes for zinc production[J]. Applied Energy, 2018, 229, 577-602.
|
[25] |
PENG C, LIU F, WANG Z, et al. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system[J]. Journal of Power Sources, 2019, 415(3): 179-188.
|
[26] |
NAN J, HAN D, ZUO X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152(12): 278-284.
|
[27] |
HU J T, ZHANG J l, LI H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Power Sources, 2017, 351(3): 192-199.
|
[28] |
LIU F P, PENG C, MA Q X, et al. Selective lithium recovery and integrated preparation of high-purity lithium hydroxide products from spent lithium-ion batteries-ScienceDirect[J]. Separation and Purification Technology, 2021, 259: 118181.
|
[1] | LEI Yu, HU Xinbo, ZHU Chuncheng, XU Qian, SUN Chenteng, ZOU Xingli, CHENG Hongwei, LU Xionggang. Mechanism of ultrasound-assisted replacement for copper removal based on products morphology[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 180-188. DOI: 10.13264/j.cnki.ysjskx.2024.02.004 |
[2] | FANG Xihui, ZHANG Cun1, XIA Yanyuan. Different factors on flotation separation kinetics of chalcopyrite and pyrite[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 110-114. DOI: 10.13264/j.cnki.ysjskx.2016.06.0019 |
[3] | LI Liyuan, NIE Qingmin, ZHONG Jianfeng, AI Guanghua. Experimental study on a high grade molybdenum-bismuth sulfide ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 85-90. DOI: 10.13264/j.cnki.ysjskx.2016.04.015 |
[4] | SHI Guiming, ZHAO Ruquan, ZHOU Yichao. Flotation of a very low grade platinum-copper-nickel ore in Sichuan[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 104-109. DOI: 10.13264/j.cnki.ysjskx.2016.02.019 |
[5] | OU Le-ming, GENG Shao-pei, FENG Qi-ming. Ultrasonic used in foaming and the effect on gas hold-up[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 80-84. DOI: 10.13264/j.cnki.ysjskx.2015.05.015 |
[6] | QIU Tingsheng, YAN Huashan, AI Guanghua, QIU Xianhui. Test study of improving copper sorting index by flash flotation[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 106-110. DOI: 10.13264/j.cnki.ysjskx.2014.05.020 |
[7] | Zeng Qingyun, ZHANG Yong, SHUAI Gengwei. Application advances of microwave and ultrasonic in tungsten metallurgy[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 15-19. DOI: 10.13264/j.cnki.ysjskx.2014.02.003 |
[8] | ZHANG Xing-wang, HUANG Xiao-yi, LAI Hong-wei. Study on floc-flotation of fine molybdenite particles[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 65-68. DOI: 10.13264/j.cnki.ysjskx.2012.06.013 |
[9] | ZHU Wen-long, HUANG Wan-fu. Experimental Study on the Beneficiation Process for a Copper -tungsten -molybdenum Ore from Jiangxi[J]. Nonferrous Metals Science and Engineering, 2010, 24(2): 13-18. |
[10] | XU Ji-hui. Geological Research on the Fourth Molybdenum Deposit of Jiangxi Chengmenshan Copper Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 10-12. |