Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
MIAO Haibin, XIANG Chaojian, ZHANG Zhikuo, LIU Shengnan, HUANG Dongnan, WU Yongfu. Modeling analysis of yield strength and earing ratio of sheet metal based on machine learning algorithm[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 67-73. DOI: 10.13264/j.cnki.ysjskx.2022.06.009
Citation: MIAO Haibin, XIANG Chaojian, ZHANG Zhikuo, LIU Shengnan, HUANG Dongnan, WU Yongfu. Modeling analysis of yield strength and earing ratio of sheet metal based on machine learning algorithm[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 67-73. DOI: 10.13264/j.cnki.ysjskx.2022.06.009

Modeling analysis of yield strength and earing ratio of sheet metal based on machine learning algorithm

More Information
  • Received Date: March 17, 2021
  • Revised Date: January 25, 2022
  • Available Online: January 15, 2023
  • In view of the high earing ratio and unstable yield strength during 1070 sheet metal production, a "composition-process-performance" model was built with a random forest algorithm based on production data. The following factors were chosen as independent variables: cold rolling reduction, hot rolling finishing temperature, Fe content, Fe/Si, etc., and the accuracies of the yield strength model (R2) and earing model were 0.75 and 0.87, respectively. Based on those models, the influence of various parameters on yield strength and earing was quantitatively studied. The variable weight coefficients and SHAP values of their variables were calculated with the model. The most remarkable factor for the yield strength was the cold rolling reduction, which was positively correlated, and the most remarkable factor for earing ratio was the Fe content, which was negatively correlated. Models were used for property predictions with given process parameters, and optimized parameters were achieved.
  • [1]
    王祝堂. 铝合金及其加工手册[M]. 长沙: 中南工业大学出版社, 2000: 184.
    [2]
    吴炜, 孙强. 应用机器学习加速新材料的研发[J]. 中国科学: 物理学力学天文学, 2018, 48(10): 58-70. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201810006.htm
    [3]
    XIE H B, JIANG Z Y, TIEU A K, et al. Prediction of rolling force using an adaptive neural network model during cold rolling of thin strip[J]. International Journal of Modern Physics B, 2008, 22(31/32): 5723-5727.
    [4]
    CHENG Y, WANG Q, JIAO W, et al. Detecting dynamic development of weld pool using machine learning from innovative composite images for adaptive welding[J]. Journal of Manufacturing Processes, 2020, 56: 908-915. doi: 10.1016/j.jmapro.2020.04.059
    [5]
    GAVIDEL S Z, LU S, RICKLI J L. Performance analysis and comparison of machine learning algorithms for predicting nugget width of resistance spot welding joints[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(9): 3779-3796. doi: 10.1007/s00170-019-03821-z
    [6]
    DUY-THANG V, NHAT-DUC H. Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach[J]. Structure and Infrastructure Engineering, 2016, 12(9): 1153-1161. doi: 10.1080/15732479.2015.1086386
    [7]
    冯小龙. 基于支持向量机回归算法的薄板冲压成形工艺参数优化[D]. 长沙: 湖南大学, 2013.
    [8]
    曾青云, 汪金良, 张传福. 基于自适应模糊神经网络的铜闪速熔炼渣含Fe/SiO2模型研究[J]. 有色金属科学与工程, 2011, 2(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201101002.htm
    [9]
    YAN P, LIU H, Du R. A neural network-based shape control system for cold rolling operations[J]. Journal of Materials Processing Tech, 2008, 202(1/2/3): 54-60.
    [10]
    邱华东, 田建艳, 王书宇, 等. 模糊神经网络融合建模方法及其在轧制力控制中的应用[J]. 中国冶金, 2021, 31(1): 52-58. doi: 10.3969/j.issn.1007-0958.2021.01.016
    [11]
    马庆龙, 王东城, 刘宏民, 等. 基于神经网络和自适应预报模型参数的平整轧制力模型[J]. 塑性工程学报, 2008(3): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC200803038.htm
    [12]
    杨健, 吴思炜. 基于机器学习的钢铁轧制过程性能预测[J]. 钢铁, 2021, 56(9): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT202109001.htm
    [13]
    WU S W, ZHOU X G, REN J K, et al. Optimal design of hot rolling process for C-Mn steel by combining industrial data-driven model and multi-objective optimization algorithm[J]. Journal of Iron & Steel Research International, 2018, 25(7): 700-705.
    [14]
    郝永志, 赵海东, 林嘉华. 基于机器学习的挤压铸造铝合金力学性能预测[J]. 特种铸造及有色合金, 2019, 39(8): 859-862. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201908016.htm
    [15]
    FANG S F. Prediction of the hardness of Cu-Ti-Co alloy using machine learning Techniques[J]. Key Engineering Materials, 2018, 777: 372-376. doi: 10.4028/www.scientific.net/KEM.777.372
    [16]
    白冰, 郑全, 任帅, 等. 基于机器学习的高强度ODS合金成分设计[J]. 原子能科学技术, 2020, 54(4): 678-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS202004015.htm
    [17]
    罗小燕, 黄祥海, 汤文聪. 基于改进VMD和GA-BP神经网络的砂岩破裂过程预测方法[J]. 有色金属科学与工程, 2021, 12(1): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202101013.htm
    [18]
    PHAM B T, SON L H, HOANG T A, et al. Prediction of shear strength of soft soil using machine learning methods[J]. Catena, 2018, 166: 181-191.
    [19]
    GABEL J, DESAPHY J, ROGNAN D, et al. Beware of machine learning-based scoring functions—on the danger of developing black boxes[J]. Journal of Chemical Information and Modeling, 2014, 54(10): 2807-2815.
    [20]
    纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201910004.htm
    [21]
    MONTAVON G, SAMEK W, MVLLER K R. Methods for interpreting and understanding deep neural Networks[J]. Digital Signal Processing, 2018, 73: 1-15.
    [22]
    孟昭亮, 张泽涛, 杨媛, 等. 改进的XGBoost杂散电流预测及可解释模型[J/OL]. 激光与光电子学进展: 1-13[2022-01-25].

Catalog

    Article Metrics

    Article views (134) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return