Citation: | MIAO Haibin, XIANG Chaojian, ZHANG Zhikuo, LIU Shengnan, HUANG Dongnan, WU Yongfu. Modeling analysis of yield strength and earing ratio of sheet metal based on machine learning algorithm[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 67-73. DOI: 10.13264/j.cnki.ysjskx.2022.06.009 |
[1] |
王祝堂. 铝合金及其加工手册[M]. 长沙: 中南工业大学出版社, 2000: 184.
|
[2] |
吴炜, 孙强. 应用机器学习加速新材料的研发[J]. 中国科学: 物理学力学天文学, 2018, 48(10): 58-70. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201810006.htm
|
[3] |
XIE H B, JIANG Z Y, TIEU A K, et al. Prediction of rolling force using an adaptive neural network model during cold rolling of thin strip[J]. International Journal of Modern Physics B, 2008, 22(31/32): 5723-5727.
|
[4] |
CHENG Y, WANG Q, JIAO W, et al. Detecting dynamic development of weld pool using machine learning from innovative composite images for adaptive welding[J]. Journal of Manufacturing Processes, 2020, 56: 908-915. doi: 10.1016/j.jmapro.2020.04.059
|
[5] |
GAVIDEL S Z, LU S, RICKLI J L. Performance analysis and comparison of machine learning algorithms for predicting nugget width of resistance spot welding joints[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(9): 3779-3796. doi: 10.1007/s00170-019-03821-z
|
[6] |
DUY-THANG V, NHAT-DUC H. Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach[J]. Structure and Infrastructure Engineering, 2016, 12(9): 1153-1161. doi: 10.1080/15732479.2015.1086386
|
[7] |
冯小龙. 基于支持向量机回归算法的薄板冲压成形工艺参数优化[D]. 长沙: 湖南大学, 2013.
|
[8] |
曾青云, 汪金良, 张传福. 基于自适应模糊神经网络的铜闪速熔炼渣含Fe/SiO2模型研究[J]. 有色金属科学与工程, 2011, 2(1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201101002.htm
|
[9] |
YAN P, LIU H, Du R. A neural network-based shape control system for cold rolling operations[J]. Journal of Materials Processing Tech, 2008, 202(1/2/3): 54-60.
|
[10] |
邱华东, 田建艳, 王书宇, 等. 模糊神经网络融合建模方法及其在轧制力控制中的应用[J]. 中国冶金, 2021, 31(1): 52-58. doi: 10.3969/j.issn.1007-0958.2021.01.016
|
[11] |
马庆龙, 王东城, 刘宏民, 等. 基于神经网络和自适应预报模型参数的平整轧制力模型[J]. 塑性工程学报, 2008(3): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC200803038.htm
|
[12] |
杨健, 吴思炜. 基于机器学习的钢铁轧制过程性能预测[J]. 钢铁, 2021, 56(9): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT202109001.htm
|
[13] |
WU S W, ZHOU X G, REN J K, et al. Optimal design of hot rolling process for C-Mn steel by combining industrial data-driven model and multi-objective optimization algorithm[J]. Journal of Iron & Steel Research International, 2018, 25(7): 700-705.
|
[14] |
郝永志, 赵海东, 林嘉华. 基于机器学习的挤压铸造铝合金力学性能预测[J]. 特种铸造及有色合金, 2019, 39(8): 859-862. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201908016.htm
|
[15] |
FANG S F. Prediction of the hardness of Cu-Ti-Co alloy using machine learning Techniques[J]. Key Engineering Materials, 2018, 777: 372-376. doi: 10.4028/www.scientific.net/KEM.777.372
|
[16] |
白冰, 郑全, 任帅, 等. 基于机器学习的高强度ODS合金成分设计[J]. 原子能科学技术, 2020, 54(4): 678-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS202004015.htm
|
[17] |
罗小燕, 黄祥海, 汤文聪. 基于改进VMD和GA-BP神经网络的砂岩破裂过程预测方法[J]. 有色金属科学与工程, 2021, 12(1): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202101013.htm
|
[18] |
PHAM B T, SON L H, HOANG T A, et al. Prediction of shear strength of soft soil using machine learning methods[J]. Catena, 2018, 166: 181-191.
|
[19] |
GABEL J, DESAPHY J, ROGNAN D, et al. Beware of machine learning-based scoring functions—on the danger of developing black boxes[J]. Journal of Chemical Information and Modeling, 2014, 54(10): 2807-2815.
|
[20] |
纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201910004.htm
|
[21] |
MONTAVON G, SAMEK W, MVLLER K R. Methods for interpreting and understanding deep neural Networks[J]. Digital Signal Processing, 2018, 73: 1-15.
|
[22] |
孟昭亮, 张泽涛, 杨媛, 等. 改进的XGBoost杂散电流预测及可解释模型[J/OL]. 激光与光电子学进展: 1-13[2022-01-25].
|