Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Zhe, WANG Jingxiu, LIN Yinhe, YIN Guoliang, LIU Shulan, LUO Lingen. Selective leaching of zinc from basic oxygen steelmaking dust by organic acids[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 1-8. DOI: 10.13264/j.cnki.ysjskx.2021.06.001
Citation: WANG Zhe, WANG Jingxiu, LIN Yinhe, YIN Guoliang, LIU Shulan, LUO Lingen. Selective leaching of zinc from basic oxygen steelmaking dust by organic acids[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 1-8. DOI: 10.13264/j.cnki.ysjskx.2021.06.001

Selective leaching of zinc from basic oxygen steelmaking dust by organic acids

More Information
  • Received Date: May 28, 2021
  • Published Date: December 30, 2021
  • The organic acids leaching process was performed to compare the leaching efficiencies of zinc and iron from a basic oxygen steelmaking dust by oxalic acid, citric acid, acetic acid, propionic acid, butyric acid, and valeric acid and the effect of acid concentration and liquid/solid stoichiometric ratio was further studied. The results showed that the six organic acids had different leaching behaviors for zinc and iron and oxalic acid was easy to form sediment on the dust surface to hinder the leaching. Citric acid had complexing properties, which was conducive to the leaching, but the leaching selectivity of zinc is poor. The leaching selectivity of the other four alkyl acids increases with the increase of carbon chain, and the effect of butyric acid was better. The preliminary optimization of butyric acid leaching led to zinc and iron leaching rate of 51.2% and 0.5%, respectively, and the mass ratio of zinc to iron in the leachate was 12.6. A butyric acid leaching technology was designed to provide a reference for future treatment of zinc-containing steelmaking dust. The high-efficiency selectivity of butyric acid has good potential for application, and it is significant for the steel industries to implement sustainable development strategy.
  • [1]
    吕冬瑞. 中国钢铁企业含锌粉尘处理工艺现状及展望[J]. 鞍钢技术, 2019, 417(3): 7-18. doi: 10.3969/j.issn.1006-4613.2019.03.002
    [2]
    刘琳, 赵强, 冯晓峰. 含锌除尘灰锌铁分离研究[J]. 钢铁研究学报, 2020, 32(8): 714-719. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON202008005.htm
    [3]
    付筱芸, 王碧侠, 刘欢, 等. 钢铁厂含锌粉尘处理技术和锌的回收[J]. 热加工工艺, 2019, 48(2): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201902004.htm
    [4]
    曾丹林, 刘胜兰, 张崎, 等. 从高炉粉尘中回收锌的工艺现状[J]. 中国有色冶金, 2014(6): 57-60. doi: 10.3969/j.issn.1672-6103.2014.06.016
    [5]
    谭宇佳, 郭宇峰, 姜涛, 等. 含锌电炉粉尘处理工艺现状及发展[J]. 矿产综合利用, 2017(3): 44-50. doi: 10.3969/j.issn.1000-6532.2017.03.007
    [6]
    王琼. 含铁尘泥还原脱锌过程的研究[D]. 唐山: 河北联合大学, 2013.
    [7]
    彭犇, 田玮, 吴朝昀, 等. 钢铁粉尘处置及资源化利用的研究进展[J]. 中国资源综合利用, 2018, 36(6): 86-88. doi: 10.3969/j.issn.1008-9500.2018.06.029
    [8]
    马爱元, 郑雪梅, 李松, 等. 含锌钢铁冶金渣尘处理技术现状[J]. 矿产综合利用, 2020(4): 1-7. doi: 10.3969/j.issn.1000-6532.2020.04.001
    [9]
    彭忠平, 沈强华, 何乾, 等. 湿法炼锌渣中银的回收[J]. 有色金属科学与工程, 2020, 11(5): 118-126. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2020050017
    [10]
    曾丹林, 刘胜兰, 龚晚君, 等. 从含铁粉尘中湿法回收锌的研究现状[J]. 湿法冶金, 2013, 32(4): 217-219. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201304007.htm
    [11]
    周园芳, 欧阳少波, 熊道陵, 等. 废轮胎热解炭黑灰渣中锌提取工艺[J]. 有色金属科学与工程, 2020, 11(6): 10-17. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202006002
    [12]
    王冬斌, 梁精龙, 李慧, 等. 冶金含锌粉尘中回收氧化锌的工艺综述[J]. 2018(6): 39-43.
    [13]
    郝月君, 蒋武锋, 郝素菊, 等. 含锌粉尘的综合处理研究进展[C]//第十届中国钢铁年会暨第六届宝钢学术年会论文集, 2015, 1-5.
    [14]
    杨冬伟, 郭键柄, 张琪, 等. 钢铁厂含锌粉尘的危害与处理技术[J]. 甘肃冶金, 2017, 39(4): 83-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYE201704022.htm
    [15]
    王超, 郭宇峰, 杨凌志, 等. 含锌渣尘中有价金属回收利用现状与研究进展[J]. 金属矿山, 2019(3): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201903004.htm
    [16]
    王俊杰, 谈定生, 丁家杰, 等. 湿法炼锌渣柠檬酸浸出回收钴、锌和镍[J]. 矿产保护与利用, 2021(2): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202102020.htm
    [17]
    石慧斌, 唐亮, 陈龙, 等. 钒钛磁铁矿尾矿重金属铅与锌的浸出规律研究[J]. 环境科学与管理, 2020, 45(11): 68-73. doi: 10.3969/j.issn.1673-1212.2020.11.015
    [18]
    STEER J M, GRIFFITHS A J. Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry[J]. Hydrometallurgy, 2013, 140(11): 34-41. http://www.onacademic.com/detail/journal_1000036028296910_8ce1.html
    [19]
    李林林, 曹林娟, 麦永雄, 等. 废旧锂离子电池有机酸湿法冶金回收技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1641-1650. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202006005.htm
    [20]
    HALLI P, HAMUYUNI J, LEIKOLA M, et al. Developing a sustainable solution for recycling electric arc furnace dust via organic acid leaching [J]. Minerals Engineering, 2018, 124: 1-9. doi: 10.1016/j.mineng.2018.05.011
    [21]
    谢泽强, 郭宇峰, 陈凤, 等. 钢铁厂含锌粉尘综合利用现状及展望[J]. 烧结球团, 2016, 41(5): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT201605013.htm
    [22]
    李进, 张梅. 电炉粉尘中湿法回收锌时铁酸锌的有效处理方法研究[C]//第十一届中国钢铁年会论文集, 2017, 1-7.
    [23]
    IRANNAJAD M, MESHKINI M, AZADMEHR A R. Leaching of zinc from low grade oxide ore using organic acid[J]. Physicochemical Problems of Mineral Processing, 2013, 49(2): 547-555.
    [24]
    LANGOVÁ Š, MATÝSEK D. Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation[J]. Hydrometallurgy, 2010, 101(3/4): 171-173.
    [25]
    KELEBEK S, YÖRÜK S, DAVIS B. Characterization of basic oxygen furnace dust and zinc removal by acid leaching[J]. Minerals Engineering, 2004, 17(2): 285-291. doi: 10.1016/j.mineng.2003.10.030
  • Cited by

    Periodical cited type(9)

    1. 吴泽鑫,张成良,张华超,高梅. 基于SSA-BP的露天矿山边坡位移变形预测. 有色金属工程. 2024(06): 125-133 .
    2. 王山,李骁俊. 基于无人机遥感技术的露天矿边坡三维测绘研究. 世界有色金属. 2023(16): 29-31 .
    3. 张培培,范家奇. 基于物联网的综合管廊自动化监测系统应用与分析. 中国市政工程. 2022(01): 109-112+117+130 .
    4. 胡军,邱俊博,栾长庆,张瀚斗. 基于IGWO-SVM的露天矿边坡变形预测. 矿冶工程. 2022(01): 15-18 .
    5. 陈兰兰,夏益强,肖海平,刘小生. 露天矿边坡稳定性监测方法研究现状及进展. 测绘通报. 2022(05): 7-13 .
    6. 黄震江,郑礼翔. 基于无人机遥感技术的露天矿边坡测绘研究. 城市勘测. 2022(03): 122-124 .
    7. 李远文. 基于无人机倾斜摄影的矿山边坡空间特征分析. 河南科技. 2021(20): 69-71 .
    8. 张玉炳,汪晓东,杨明化,高全. 基于双测量机器人的土石坝智能变形监测信息集成与整编. 水利水电快报. 2020(05): 66-70 .
    9. 陈优良,卞焕,肖钢,朱倩,李远文. 测量机器人自动极坐标二次基准差分改正方法. 测绘科学. 2020(08): 33-40 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (192) PDF downloads (12) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return