Citation: | YAO Shiwen, HUANG Wenjin, SHU Bo, XIA Shubiao. Graphene-supported Ni-based polyoxometalate anode material and its electrochemical performance[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 134-141. DOI: 10.13264/j.cnki.ysjskx.2020.05.019 |
[1] |
段建峰, 钟盛文, 曾敏. 20Ah富锂锰动力电池的性能研究[J].有色金属科学与工程, 2013, 4(2): 37-40. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201302008
|
[2] |
GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2014, 7: 14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9cfa1da5d1a86b3e32e9ea9d16faef3
|
[3] |
ARMAND M, TAEASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657. doi: 10.1038/451652a
|
[4] |
李俊莉, 黄文进, 杨润芳, 等. Mn掺杂Co0.9Mn0.1P/RGO复合电极材料的合成及其电化学性能[J].江西冶金, 2020, 40(1): 22-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxyj202001005
|
[5] |
BOLES M A, ENGEL M, TALAPIN D V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials[J]. Chemical Reviews, 2016, 116: 11220-11289. doi: 10.1021/acs.chemrev.6b00196
|
[6] |
KONG L, ZHONG M, SHUANG W, et al. Electrochemically active sites inside crystalline porous materials for energy storage and conversion[J]. Chemical Society Reviews, 2020, 49:2378. doi: 10.1039/C9CS00880B
|
[7] |
LI C, LIU L, KANG J, et al. Pristine MOF and COF materials for advanced batteries[J]. Energy Storage Materials, 2020, 31: 115-134. doi: 10.1016/j.ensm.2020.06.005
|
[8] |
JI Y, MA Y, LIU R, et al. Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage[J]. Journal of Materials Chemistry A, 2019, 87: 13096. http://pubs.rsc.org/en/content/articlepdf/2019/ta/c9ta03498f
|
[9] |
YUE Y, LI Y, BI Z, et al. A POM-organic framework anode for Li-ion battery[J]. Journal of Materials Chemistry A, 2015(3): 22989-22995. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=51798a83f7ed47666e808b40dfa75e41
|
[10] |
WANG H, HAMANAKA S, NISHIMOTO Y, et al. In Operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: polyoxometalates as electron sponges[J]. Journal of the American Chemical Society, 2012, 134: 4918-4924. doi: 10.1021/ja2117206
|
[11] |
XIE J, ZHANG Y, HAN Y, et al. High-capacity molecular scale conversion anode enabled by hybridizing cluster-type framework of high loading with amino-functionalized graphene[J]. ACS Nano, 2016, 10: 5304-5313. doi: 10.1021/acsnano.6b01321
|
[12] |
XIA G, LIU D, ZHENG F, et al. Preparation of porous MoO2@C nano-octahedrons from a polyoxometalate-based metal-organic framework for highly reversible lithium storage[J]. Journal of Materials Chemistry A, 2016(4): 12434-12441. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7485c12183aee767f195b5587a3e94d7
|
[13] |
JI Y, HU J, HUANG L, et al. Covalent attachment of anderson-type polyoxometalates to single-walled carbon nanotubes gives enhanced performance electrodes for lithium ion batteries[J]. Chemistry: A European Journal, 2015, 21: 6469-6474. doi: 10.1002/chem.201500218
|
[14] |
WANG Y, ZHAGN M LI S, et al. Diamondoid-structured polymolybdate-based metal-organic frameworks as high-capacity anodes for lithium-ion batteries[J]. Chemical Communications, 2017, 53: 5204-5207. doi: 10.1039/C6CC10208E
|
[15] |
HARTUNG S, BUCHER N, CHEN H, et al. Vanadium-based polyoxometalate as new material for sodium-ion battery anodes[J]. Journal of Power Sources, 2015, 288: 270-277. doi: 10.1016/j.jpowsour.2015.04.009
|
[16] |
CHEN W, HUANG L, HU J, et al. Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials[J]. Physical Chemistry Chemical Physics, 2014, 16: 19668-19673. doi: 10.1039/C4CP03202K
|
[17] |
HU J, JIA F, SONG Y. Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries[J]. Chemical Engineering Journal, 2017, 326: 273-280. doi: 10.1016/j.cej.2017.05.153
|
[18] |
CHENJ, SYMES M D, FAN S, et al. High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries[J]. Advanced Materials, 2015, 27: 4649-4654. doi: 10.1002/adma.201501088
|
[19] |
ZHANG M, ZHANG A M, WANG X X, et al. Encapsulating ionic liquids into POM-based MOFs to improve their conductivity for superior lithium storage[J]. Journal of Materials Chemistry A, 2018(6): 8735-8741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d49cd73fc28ca0abb190fd61858362b1
|
[20] |
HUANG B, YANG D H, HAN B H. Application of polyoxometalate derivatives in rechargeable batteries[J]. Journal of Materials Chemistry A, 2020(8): 4593.
|
[21] |
ZHU P, YANG X, LI X, et al. Insights into the lithium diffusion process in a defect-containing porous crystalline POM@MOF anode material[J]. Daltion Transsctions, 2020, 49:79. doi: 10.1039/C9DT04163J
|
[22] |
SAMANIYAN M, MIRZAEI M, KHAJAVIAN R, et al. Heterogeneous catalysis by polyoxometalates in metal-organic frameworks[J]. ACS Catalysis, 2019(9):10174-10191.
|
[23] |
LIU Y Z, YAO W, GAN H M, et al. Polyoxometalates-based metal-organic frameworks made by electrodeposition and carbonization methods as cathodes and anodes for asymmetric supercapacitors[J]. Chemistry: A European Journal, 2019, 25: 16617-16624. doi: 10.1002/chem.201903664
|
[1] | DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001 |
[2] | ZHANG Hepeng, CHEN Jinqing. Research progress of hydrophobic eutectic solvent extraction of metal ions[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 9-18. DOI: 10.13264/j.cnki.ysjskx.2021.04.002 |
[3] | WU Jianhui, DONG Bo, ZHANG Xianpeng, YE Fengchun, WANG Hongjun, JI Hongwei, GUO Fangying, QIU Shiwei, LIU Zhidong. Solvent extraction of Cu, Zn, Co from nickel sulphate solution applying P507[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 19-24. DOI: 10.13264/j.cnki.ysjskx.2018.02.004 |
[4] | Zhang Ying, Zhang Ting-an. Research progress for vanadium extraction from vanadium leach solution by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 14-20. DOI: 10.13264/j.cnki.ysjskx.2017.05.002 |
[5] | HUANG Xilin, LI Liangxing, HUANG Jindi, LIAO Chunfa, TONG Changren. Extraction performance of bismuth with N235 under Cl-assisted extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 19-23. DOI: 10.13264/j.cnki.ysjskx.2017.02.004 |
[6] | DING Yangli, XIAO Liansheng, CAO Zuoying, ZHANG Guiqing, ZENG Li. Separation of vanadium from sodium molybdate solution by N263[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 15-20. DOI: 10.13264/j.cnki.ysjskx.2017.01.003 |
[7] | WANG Fang, Zhao Hongxing, XIAO Yanfei, XU Zhifeng. Solvent extraction of thioarsenite by CO32--type tOMAC in alkaline solutions[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 14-18. |
[8] | CHEN Jing-qing, LIN Kai, XIONG Jia-ren, DUAN Min, HUANG Ya-xiang. Extraction of vanadium from high alkaline solution by modified quaternary ammonium salt[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 21-26. DOI: 10.13264/j.cnki.ysjskx.2015.02.004 |
[9] | LI Bo. Research advances of molybdenum solvent extraction in acidic system[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 33-36. DOI: 10.13264/j.cnki.ysjskx.2013.06.021 |
[10] | ZHANG Zi-yan. The Research and Development of Solvent Extraction in Tungsten Smelting[J]. Nonferrous Metals Science and Engineering, 2005, 19(3): 22-27, 46. |