Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
TAN Xiaoheng, GUO Shaoyu, YU Xiangbiao, XIAO Jie, JIAO Yunfen. Study on the physical property transformation of magnetite in roasted copper slag[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 83-89. DOI: 10.13264/j.cnki.ysjskx.2020.05.012
Citation: TAN Xiaoheng, GUO Shaoyu, YU Xiangbiao, XIAO Jie, JIAO Yunfen. Study on the physical property transformation of magnetite in roasted copper slag[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 83-89. DOI: 10.13264/j.cnki.ysjskx.2020.05.012

Study on the physical property transformation of magnetite in roasted copper slag

More Information
  • Received Date: April 17, 2020
  • Published Date: October 30, 2020
  • In order to explore the physical properties of magnetite in the roasted copper slag in the molten state, a melt oxidation roasting experiment was conducted on the copper slag in a CO/CO2 atmosphere. The effects were investigated of CaO addition and calcination temperature on the transition process of Fe2SiO4 to Fe3O4 in the slag, and the migration and enrichment of Fe3O4. The addition of CaO promotes the conversion of Fe2SiO4 to Fe3O4 in the slag and the migration and enrichment of Fe3O4, and the properly selected roasting temperature can maximize the migration and enrichment of Fe3O4. Finally, it was found that the addition of CaO was 25 % of the mass of the copper slag, the calcination temperature was 1 300 ℃, the holding time was 2 h, and the volume of CO2 and CO was 190:10. The Fe2SiO4 in the copper slag had basically completed the conversion to Fe3O4 and its migration and enrichment degree was better.
  • [1]
    DURINCK D, ENGSTR M F, ARNOUT S, et al. Hot stage processing of metallurgical slags[J]. Resources, Conservation and Recycling, 2008, 52(10): 1121-31. doi: 10.1016/j.resconrec.2008.07.001
    [2]
    CHUN T, NING C, LONG H, et al. Mineralogical characterization of copper slag from tongling nonferrous metals group china[J]. Jom, 2015, 68(9): 2332-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1bff71211723d70c2c209ce99801d8fb
    [3]
    GBOR P, VALENTINAMOKRI, JIA C. Characterization of smelter slags[J]. Environ Lett, 2000, 35(2): 147-67. doi: 10.1080/10934520009376960?src=recsys
    [4]
    胡建杭, 王华, 赵鲁梅, 等.贫化铜渣的特性分析[J].安全与环境学报, 2011, 11(2):90-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aqyhjxb201102022
    [5]
    NAJIMI M, POURKHORSHIDI A R. Properties of concrete containing copper-slag-waste[J]. Magazine of Concrete Research, 2011, 63(8): 605-15. doi: 10.1680/macr.2011.63.8.605
    [6]
    GORAI B, JANA R K, PREMCHAND. Characteristics and utilisation of copper slag-a review[J]. Resources, Conservation and Recycling, 2003, 39(4): 299-313. doi: 10.1016/S0921-3449(02)00171-4
    [7]
    SHEN H, FORSSBERG E. An overview of recovery of metals from slags[J]. Waste Manag, 2003, 23(10): 933-49. doi: 10.1016/S0956-053X(02)00164-2
    [8]
    陈友德.铜冶炼浮选矿渣的利用价值[J].水泥技术, 2015(1):111-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=snjs201501026
    [9]
    SHI C, MEYER C, BEHNOOD A. Utilization of copper slag in cement and concrete[J]. Resour Conserv Recycl, 2008, 52(10): 1115-1134. doi: 10.1016/j.resconrec.2008.06.008
    [10]
    汤海波.铜冶炼主要副产物处理与综合利用工艺研究[D].武汉: 武汉科技大学, 2014.
    [11]
    胡建杭, 王华, 赵鲁梅, 等.贫化铜渣的特性分析[J].安全与环境学报, 2011(2):90-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aqyhjxb201102022
    [12]
    吴龙, 郝以党.铜渣资源化利用现况及高效化利用探讨[J].中国有色冶金, 2015(2):61-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysyl201502017
    [13]
    徐露, 库建刚, 林存键, 等.从铜渣中回收铁的研究进展[J].现代化工, 2016(2):26-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdhg201602007
    [14]
    BRINKMANN U, LAQUA W. Decomposition of fayalite (Fe2SiO4) in an oxygen potential gradient at 1, 418 K. Phys[J]. Chem. Miner, 1985, 12:283. doi: 10.1007/BF00310341
    [15]
    李黎.从铜渣中回收铁的研究概况[J].中国化工贸易, 2012(11):177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghgmy201211164
    [16]
    赵艳, 关翔.铁矿石焙烧-磁选探索性试验研究[J].新疆钢铁, 2007(2):10-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjgt200702004
    [17]
    汤海波.铜冶炼主要副产物处理与综合利用工艺研究[D].武汉: 武汉科技大学, 2014.
    [18]
    姚春玲, 刘振楠, 滕瑜, 等.铜渣资源综合利用现状及展望[J].矿冶, 2019, 28(2):77-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ky201902017
    [19]
    余志翠.选矿技术在铜渣综合利用中的应用[J].中国高新技术企业, 2016(28):157-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxjsqy201619078
    [20]
    赵凯, 宫晓然, 李杰, 等.直接还原法回收铜渣中铁、铜和锌的热力学[J].环境工程学报, 2016, 10(5):2638-2646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201605075
    [21]
    张铃, 方建军, 唐敏, 等.铜冶炼渣湿法处理技术研究进展[J].矿产保护与利用, 2019, 39(3):81-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201903014
    [22]
    刘金生, 姜平国, 肖义钰, 等.从铜渣中回收铁的研究现状及其新方法的提出[J].有色金属科学与工程, 2019, 10(2):19-24. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201902004
  • Related Articles

    [1]YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003
    [2]MAO Linghan, YU Xinyang, WEI Xin'an, XIE Honghui, CHEN Shuhua. Application and mechanism of organosilicon collector TAS550 for desilication and purification of magnetite by reverse flotation[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 285-292. DOI: 10.13264/j.cnki.ysjskx.2024.02.015
    [3]ZHENG Ya, LIU Juan, YU Qiang, MU Yichen, ZHAO Xiaoyu, LI Xiaocheng. Preparation of micro-nano hierarchical Si/C composites by CO2 oxidation of porous Mg2Si and lithium storage properties[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 256-264. DOI: 10.13264/j.cnki.ysjskx.2024.02.012
    [4]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [5]Ma Baozhong, Wang Chengyan, Chen Yongqiang, Xing Peng. Pilot-scale plant study on non-molten metalized reduction–magnetic separation for magnesium-rich nickel oxide ores to produce ferronickel concentrate[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 34-38, 70. DOI: 10.13264/j.cnki.ysjskx.2018.01.006
    [6]LIANG Changli, QIN Wenqing, CHEN Jinghe, DAI Hongguang, ZHONG Shuiping. Effect of pH value on bio-oxidation of gold-containing pyrite by moderately thermophiles[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 25-28. DOI: 10.13264/j.cnki.ysjskx.2016.03.005
    [7]ZHANG Xiaoping, YANG Bin, LI Mingmao, CHEN Jianming, WANG Hang. Anti-burning loss of CuCrZr alloys melted under non-vacuum conditions[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 36-39. DOI: 10.13264/j.cnki.ysjskx.2015.03.007
    [8]JIANG Wen-wei, CHEN Xiang-ming. Research on the Microstructure of Tungsten Oxides[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 105-108.
    [9]CAI Xu. On the Application of Slon High-gradient Magnetic Separator in Cobalt Oxide Mine[J]. Nonferrous Metals Science and Engineering, 2009, 23(2): 16-17,22.
    [10]ZHANG Wen-yan, WU Guang-yuan. Experiment of recovering RE oxide and Co oxide from NdFeB waste[J]. Nonferrous Metals Science and Engineering, 2001, 15(4): 23-26.

Catalog

    Article Metrics

    Article views (92) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return