Citation: | ZOU Guoliang, LIU Nana, WU Yiding. Analysis on the controllability and observability of negative externalities in mining of ion-adsorption rare earth resources[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 98-102. DOI: 10.13264/j.cnki.ysjskx.2020.01.016 |
[1] |
袁长林.中国南岭淋积型稀土溶浸采矿正压系统的分类与开采技术[J].稀土, 2010(4):75-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201002017
|
[2] |
池汝安, 田君.风化壳淋积型稀土矿化工冶金[M].北京:科学出版社, 2006.
|
[3] |
中华人民共和国国土资源部.DZ/T 0204—2002, 稀土矿产地质勘查规范[M].北京:冶金工业出版社, 2003.
|
[4] |
赖兆添, 姚渝州.采用原地浸矿工艺的风化壳淋积型稀土矿山"三率"问题的探讨[J].稀土, 2010(4):86-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201002019
|
[5] |
丁嘉榆, 邓国庆.现行离子型稀土勘查规范存在的主要问题与修订建议[J].有色金属科学与工程, 2013, 4(4):96-102. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013040017
|
[6] |
邓茂春, 王登红, 曾载淋等.风化壳离子吸附型稀土矿圈矿方法评价[J].岩矿测试, 2013 (10): 803-809. http://d.old.wanfangdata.com.cn/Periodical/ykcs201305021
|
[7] |
赵汀, 王登红, 王瑞江等.克里格法在离子吸附型稀土矿勘查储量估算中的应用[J].岩矿测试, 2014(1): 126-132. http://d.old.wanfangdata.com.cn/Periodical/ykcs201401020
|
[8] |
赵汀, 王登红, 王瑞江等.离子吸附型稀土矿储量动态估算方法(RiRee)及其拓展运用[J].地球学报, 2017, 38(3): 326-334. http://d.old.wanfangdata.com.cn/Periodical/dqxb201703003
|
[9] |
王瑞, 李亮, 周大伟等.地质统计学在稀土矿储量计算研究应用[J].稀土, 2019, 40(2): 35-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201902004
|
[10] |
伍昕宇, 谭饶峰, 李建中, 等.剖面反距离加权插值算法在离子吸附型[J].稀土, 2019, 40(1): 14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201901003
|
[11] |
李永绣.南方离子型稀土开采技术现状与应用调查-矿山开采技术与源源环境保护措施[C]//中国稀土资源综合利用与环境保护研讨会论文集, 2007: 45-48.
|
[12] |
陈建国, 李志萌.稀土矿矿山环境治理与土地复垦—以赣南"龙南模式"为例[C]//中国环境科学学会学术年会论文集, 2010: 3928-3932.
|
[13] |
李春.原地浸矿新工艺在离子型稀土矿的推广应用[J].有色金属科学与工程, 2011, 2(2): 63-67. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20110115
|
[14] |
池汝安, 田君, 罗仙平.风化壳淋积型稀土矿的基础研究[J].有色金属科学与工程, 2012, 3(6): 1-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201204001
|
[15] |
蔡奇英, 刘以珍, 管毕财等.南方离子型稀土矿的环境问题及生态重建途径[J].国土与自然资源研究, 2013(5): 52-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtyzrzyyj201305018
|
[16] |
刘勇.离子型稀土矿原地浸矿开采对地下水环境影响数值模拟[J].南京工程学院学报(自然科学版), 2014(6): 64-68. http://d.old.wanfangdata.com.cn/Periodical/njgcxyxb-zrkxb201402013
|
[17] |
邹国良, 吴一丁, 蔡嗣经.离子型稀土矿浸取工艺对资源、环境的影响[J].有色金属科学与工程, 2014, 5(2): 100-105. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201402018
|
[18] |
邹国良, 吴一丁, 蔡嗣经.资源环境保护视角下离子型稀土资源开采政策导向研究[J].有色金属科学与工程, 2016, 7(2): 147-152. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602026
|
[19] |
赵彬, 佘宗华, 康虔等.离子型稀土原地浸矿开采技术适用性评价与分类[J].矿冶工程, 2017, 37(3): 6-10. http://d.old.wanfangdata.com.cn/Periodical/kygc201703002
|
[20] |
丁嘉榆.对离子型稀土矿"原地浸出"与"堆浸"工艺优劣的探讨[J].稀土信息, 2017 (12):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtxx201712013
|
[21] |
陈道贵.基于物元分析和组合权重的原地浸矿技术适用性评价模型[J].稀土, 2019, 40(4):32-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201904004
|
[22] |
罗仙平, 翁存建, 徐晶, 等.离子型稀土矿开发技术研究进展及发展方向[J].金属矿山, 2014 (6):83-90. http://d.old.wanfangdata.com.cn/Periodical/jsks201406017
|
[23] |
钟志刚, 周贺鹏, 胡洁, 等.南方离子型稀土矿绿色提取技术研究进展[J].金属矿山, 2017 (12):76-81. http://d.old.wanfangdata.com.cn/Periodical/jsks201712016
|
[24] |
刘琦, 周芳, 冯健, 等.我国稀土资源现状及选矿技术进展[J].矿产保护与利用, 2017 (5):76-83. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201905009
|
[25] |
陈道贵.离子型稀土矿无铵化浸取剂实验研究[J].矿冶工程, 2019, 39(2):89-92. http://d.old.wanfangdata.com.cn/Periodical/kygc201902022
|
[26] |
邬长福, 姚贵佳, 陈亮, 等.基于Geo-Studio的离子型稀土矿边坡稳定性分析[J].中国地质灾害与防治学报, 2016, 27(2):73-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201602011
|
[27] |
王观石, 罗嗣海, 胡世丽, 等.裸脚式稀土矿山原地浸矿渗流过程及边坡变形[J].稀土, 2017, 38(3):35-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201703005
|
[28] |
陈敏, 张大超, 朱清江, 等.离子型稀土矿山废弃地生态修复研究进展[J].中国稀土学报, 2017, 35(4):461-468. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201704004
|
[29] |
位振亚, 罗仙平, 梁健, 等.南方稀土矿山废弃地生态修复技术进展[J].有色金属科学与工程, 2018, 9(4):102-106. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201804017
|
[30] |
史晓燕, 陈宏文.废弃池浸堆浸离子型稀土矿污染途径及其修复研究[J].中国稀土学报, 2019, 37(4):409-417. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201904003
|
[31] |
谢东, 李丝雨, 何森, 等.重金属污染土壤修复植物根际微生态的研究进展[J].江西理工大学学报, 2019, 40(5):64-71. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb201905010
|
[32] |
涂婷, 王月, 安达, 等.赣南稀土矿区地下水污染现状、危害及处理技术与展望[J].环境工程技术学报, 2017, 7(6):691-699. http://d.old.wanfangdata.com.cn/Periodical/hjgcjsxb201706006
|
[33] |
张贤平, 杨斌清, 向燕.基于未确知测度模型的稀土原地浸矿地下水污染风险评价[J].有色金属科学与工程, 2018, 9(6):81-88. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201806013
|
[34] |
邓振乡, 秦磊, 王观石, 等.离子型稀土矿山氨氮污染及其治理研究进展[J].稀土, 2019, 40(2):120-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201902016
|
[35] |
杨耀杰, 王观石, 龙平, 等.离子型稀土矿浸矿过程的线性可逆动态吸附模型[J].中国矿业, 2019, 28(9):120-124. http://d.old.wanfangdata.com.cn/Periodical/zgky201909022
|
[36] |
黄德晟, 管新地, 李华杰, 等.离子型稀土矿山生产过程控制系统研究[J].世界有色金属, 2019 (4):189-190. http://d.old.wanfangdata.com.cn/Periodical/sjysjs201907109
|
[37] |
邹国良.离子型稀土矿不同采选工艺比较:基于成本的视角[J].有色金属科学与工程, 2012, 3(4):53-56. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201204009
|
[38] |
丁锋.现代控制理论[M].北京:清华大学出版社, 2018.
|
[1] | FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010 |
[2] | QI Dexing, YU Shui, GUO Qiuyue, WEN Yingjiang, QIU Jiayong, MAO Rui. Thermodynamic behavior of calcified carbothermal reduction of zinc ferrite[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 505-512. DOI: 10.13264/j.cnki.ysjskx.2024.04.005 |
[3] | ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014 |
[4] | YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009 |
[5] | GENG Yanglei, WANG Yiyong. Preparation of the Sn/ZrO2 coating and the effect of ZrO2 nanoparticle on the electrodeposition process[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 49-54. DOI: 10.13264/j.cnki.ysjskx.2022.03.007 |
[6] | XU Jiacong, YU Xiaoqiang, GONG Ao, WU Xuangao, CAO Caifang, LIU Mudan, CHEN Zhiqiang, TIAN Lei, XU Zhifeng, LIU Yong. Kinetic of carbothermal reduction of zinc, tin and lead from electroplating sludge[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 52-58. DOI: 10.13264/j.cnki.ysjskx.2020.05.008 |
[7] | CHEN Hao, YANG Jian-gao, LI Jin-hui, ZHANG Xue-hui, LYU Jian. Coating process conditions of W alloy electrodeposition[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 28-32. DOI: 10.13264/j.cnki.ysjskx.2013.05.006 |
[8] | ZHANG Ying-hui, ZHONG Zhi-qiang, CHEN Han. Effects of yttrium on the microstructure and properties of Al-Cu-Mg-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 32-36. DOI: 10.13264/j.cnki.ysjskx.2012.02.019 |
[9] | LI Yong, LIU Rui-qing, XU Fang. Tribological Behaviors of Cu-Ag-Fe Alloy Carrying Electric Current[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 18-22. |
[10] | YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48. |