Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZOU Guoliang, LIU Nana, WU Yiding. Analysis on the controllability and observability of negative externalities in mining of ion-adsorption rare earth resources[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 98-102. DOI: 10.13264/j.cnki.ysjskx.2020.01.016
Citation: ZOU Guoliang, LIU Nana, WU Yiding. Analysis on the controllability and observability of negative externalities in mining of ion-adsorption rare earth resources[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 98-102. DOI: 10.13264/j.cnki.ysjskx.2020.01.016

Analysis on the controllability and observability of negative externalities in mining of ion-adsorption rare earth resources

More Information
  • Received Date: January 08, 2020
  • Published Date: February 28, 2020
  • The mining of ion-adsorption rare earth resources will cause negative externalities regardless of in-situ leaching or heap leaching process under the current technical conditions. By analyzing the manifestations, the controllability and observability of negative externalities during the mining of ion-adsorption rare earth resources based on modern control theory, the conclusions are drawn as follows:①The controllability of the negative externalities of ion-adsorption rare earth resources mined by in-situ leaching process will be more difficult than that by heap leaching process; ②The observability of the negative externalities of ion-adsorption rare earth resources mined by heap leaching process will be easier than by in-situ leaching process. In addition, it is recommended to further optimize in-situ leaching and heap leaching processes, and then systematically compare the two processes from the perspective of the whole process of resource mining and the controllability and observability of the negative externalities, and clarify various leaching processes applicable conditions.
  • [1]
    袁长林.中国南岭淋积型稀土溶浸采矿正压系统的分类与开采技术[J].稀土, 2010(4):75-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201002017
    [2]
    池汝安, 田君.风化壳淋积型稀土矿化工冶金[M].北京:科学出版社, 2006.
    [3]
    中华人民共和国国土资源部.DZ/T 0204—2002, 稀土矿产地质勘查规范[M].北京:冶金工业出版社, 2003.
    [4]
    赖兆添, 姚渝州.采用原地浸矿工艺的风化壳淋积型稀土矿山"三率"问题的探讨[J].稀土, 2010(4):86-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201002019
    [5]
    丁嘉榆, 邓国庆.现行离子型稀土勘查规范存在的主要问题与修订建议[J].有色金属科学与工程, 2013, 4(4):96-102. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013040017
    [6]
    邓茂春, 王登红, 曾载淋等.风化壳离子吸附型稀土矿圈矿方法评价[J].岩矿测试, 2013 (10): 803-809. http://d.old.wanfangdata.com.cn/Periodical/ykcs201305021
    [7]
    赵汀, 王登红, 王瑞江等.克里格法在离子吸附型稀土矿勘查储量估算中的应用[J].岩矿测试, 2014(1): 126-132. http://d.old.wanfangdata.com.cn/Periodical/ykcs201401020
    [8]
    赵汀, 王登红, 王瑞江等.离子吸附型稀土矿储量动态估算方法(RiRee)及其拓展运用[J].地球学报, 2017, 38(3): 326-334. http://d.old.wanfangdata.com.cn/Periodical/dqxb201703003
    [9]
    王瑞, 李亮, 周大伟等.地质统计学在稀土矿储量计算研究应用[J].稀土, 2019, 40(2): 35-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201902004
    [10]
    伍昕宇, 谭饶峰, 李建中, 等.剖面反距离加权插值算法在离子吸附型[J].稀土, 2019, 40(1): 14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201901003
    [11]
    李永绣.南方离子型稀土开采技术现状与应用调查-矿山开采技术与源源环境保护措施[C]//中国稀土资源综合利用与环境保护研讨会论文集, 2007: 45-48.
    [12]
    陈建国, 李志萌.稀土矿矿山环境治理与土地复垦—以赣南"龙南模式"为例[C]//中国环境科学学会学术年会论文集, 2010: 3928-3932.
    [13]
    李春.原地浸矿新工艺在离子型稀土矿的推广应用[J].有色金属科学与工程, 2011, 2(2): 63-67. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20110115
    [14]
    池汝安, 田君, 罗仙平.风化壳淋积型稀土矿的基础研究[J].有色金属科学与工程, 2012, 3(6): 1-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201204001
    [15]
    蔡奇英, 刘以珍, 管毕财等.南方离子型稀土矿的环境问题及生态重建途径[J].国土与自然资源研究, 2013(5): 52-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtyzrzyyj201305018
    [16]
    刘勇.离子型稀土矿原地浸矿开采对地下水环境影响数值模拟[J].南京工程学院学报(自然科学版), 2014(6): 64-68. http://d.old.wanfangdata.com.cn/Periodical/njgcxyxb-zrkxb201402013
    [17]
    邹国良, 吴一丁, 蔡嗣经.离子型稀土矿浸取工艺对资源、环境的影响[J].有色金属科学与工程, 2014, 5(2): 100-105. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201402018
    [18]
    邹国良, 吴一丁, 蔡嗣经.资源环境保护视角下离子型稀土资源开采政策导向研究[J].有色金属科学与工程, 2016, 7(2): 147-152. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602026
    [19]
    赵彬, 佘宗华, 康虔等.离子型稀土原地浸矿开采技术适用性评价与分类[J].矿冶工程, 2017, 37(3): 6-10. http://d.old.wanfangdata.com.cn/Periodical/kygc201703002
    [20]
    丁嘉榆.对离子型稀土矿"原地浸出"与"堆浸"工艺优劣的探讨[J].稀土信息, 2017 (12):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtxx201712013
    [21]
    陈道贵.基于物元分析和组合权重的原地浸矿技术适用性评价模型[J].稀土, 2019, 40(4):32-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201904004
    [22]
    罗仙平, 翁存建, 徐晶, 等.离子型稀土矿开发技术研究进展及发展方向[J].金属矿山, 2014 (6):83-90. http://d.old.wanfangdata.com.cn/Periodical/jsks201406017
    [23]
    钟志刚, 周贺鹏, 胡洁, 等.南方离子型稀土矿绿色提取技术研究进展[J].金属矿山, 2017 (12):76-81. http://d.old.wanfangdata.com.cn/Periodical/jsks201712016
    [24]
    刘琦, 周芳, 冯健, 等.我国稀土资源现状及选矿技术进展[J].矿产保护与利用, 2017 (5):76-83. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201905009
    [25]
    陈道贵.离子型稀土矿无铵化浸取剂实验研究[J].矿冶工程, 2019, 39(2):89-92. http://d.old.wanfangdata.com.cn/Periodical/kygc201902022
    [26]
    邬长福, 姚贵佳, 陈亮, 等.基于Geo-Studio的离子型稀土矿边坡稳定性分析[J].中国地质灾害与防治学报, 2016, 27(2):73-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201602011
    [27]
    王观石, 罗嗣海, 胡世丽, 等.裸脚式稀土矿山原地浸矿渗流过程及边坡变形[J].稀土, 2017, 38(3):35-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201703005
    [28]
    陈敏, 张大超, 朱清江, 等.离子型稀土矿山废弃地生态修复研究进展[J].中国稀土学报, 2017, 35(4):461-468. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201704004
    [29]
    位振亚, 罗仙平, 梁健, 等.南方稀土矿山废弃地生态修复技术进展[J].有色金属科学与工程, 2018, 9(4):102-106. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201804017
    [30]
    史晓燕, 陈宏文.废弃池浸堆浸离子型稀土矿污染途径及其修复研究[J].中国稀土学报, 2019, 37(4):409-417. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201904003
    [31]
    谢东, 李丝雨, 何森, 等.重金属污染土壤修复植物根际微生态的研究进展[J].江西理工大学学报, 2019, 40(5):64-71. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb201905010
    [32]
    涂婷, 王月, 安达, 等.赣南稀土矿区地下水污染现状、危害及处理技术与展望[J].环境工程技术学报, 2017, 7(6):691-699. http://d.old.wanfangdata.com.cn/Periodical/hjgcjsxb201706006
    [33]
    张贤平, 杨斌清, 向燕.基于未确知测度模型的稀土原地浸矿地下水污染风险评价[J].有色金属科学与工程, 2018, 9(6):81-88. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201806013
    [34]
    邓振乡, 秦磊, 王观石, 等.离子型稀土矿山氨氮污染及其治理研究进展[J].稀土, 2019, 40(2):120-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xitu201902016
    [35]
    杨耀杰, 王观石, 龙平, 等.离子型稀土矿浸矿过程的线性可逆动态吸附模型[J].中国矿业, 2019, 28(9):120-124. http://d.old.wanfangdata.com.cn/Periodical/zgky201909022
    [36]
    黄德晟, 管新地, 李华杰, 等.离子型稀土矿山生产过程控制系统研究[J].世界有色金属, 2019 (4):189-190. http://d.old.wanfangdata.com.cn/Periodical/sjysjs201907109
    [37]
    邹国良.离子型稀土矿不同采选工艺比较:基于成本的视角[J].有色金属科学与工程, 2012, 3(4):53-56. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201204009
    [38]
    丁锋.现代控制理论[M].北京:清华大学出版社, 2018.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]QI Dexing, YU Shui, GUO Qiuyue, WEN Yingjiang, QIU Jiayong, MAO Rui. Thermodynamic behavior of calcified carbothermal reduction of zinc ferrite[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 505-512. DOI: 10.13264/j.cnki.ysjskx.2024.04.005
    [3]ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014
    [4]YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009
    [5]GENG Yanglei, WANG Yiyong. Preparation of the Sn/ZrO2 coating and the effect of ZrO2 nanoparticle on the electrodeposition process[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 49-54. DOI: 10.13264/j.cnki.ysjskx.2022.03.007
    [6]XU Jiacong, YU Xiaoqiang, GONG Ao, WU Xuangao, CAO Caifang, LIU Mudan, CHEN Zhiqiang, TIAN Lei, XU Zhifeng, LIU Yong. Kinetic of carbothermal reduction of zinc, tin and lead from electroplating sludge[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 52-58. DOI: 10.13264/j.cnki.ysjskx.2020.05.008
    [7]CHEN Hao, YANG Jian-gao, LI Jin-hui, ZHANG Xue-hui, LYU Jian. Coating process conditions of W alloy electrodeposition[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 28-32. DOI: 10.13264/j.cnki.ysjskx.2013.05.006
    [8]ZHANG Ying-hui, ZHONG Zhi-qiang, CHEN Han. Effects of yttrium on the microstructure and properties of Al-Cu-Mg-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 32-36. DOI: 10.13264/j.cnki.ysjskx.2012.02.019
    [9]LI Yong, LIU Rui-qing, XU Fang. Tribological Behaviors of Cu-Ag-Fe Alloy Carrying Electric Current[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 18-22.
    [10]YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48.

Catalog

    Article Metrics

    Article views (98) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return