Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Jinliang, WANG Longjun. Research of melting temperature of the smelting slag of copper clad laminate scrap[J]. Nonferrous Metals Science and Engineering, 2020, 11(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2020.01.008
Citation: WANG Jinliang, WANG Longjun. Research of melting temperature of the smelting slag of copper clad laminate scrap[J]. Nonferrous Metals Science and Engineering, 2020, 11(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2020.01.008

Research of melting temperature of the smelting slag of copper clad laminate scrap

More Information
  • Received Date: October 07, 2019
  • Published Date: February 28, 2020
  • Copper clad laminate scrap (CCLS) is a kind of electronic waste containing low iron and high boron. To get suitable melting temperature property for CCLS recycling process, 17 groups of slag samples were prepared by some chemical reagents, and the slag melting temperatures were measured using a RDS-2010 type intelligent test instrument for ash melting point by means of hemisphere point. Then, the mathematical formula between the melting temperature and the chemical composition of smelting slag were acquired by means of nonlinear regression analysis. The effects of the FeO content (w(Feo)), Fe3O4 content (w(Fe3O4)), Al2O3 content (w(Al2O3)), B2O3 content (w(B2O3)), CaO/SiO2 ratio (m(Cao)/m(SiO2)) on the slag melting temperatures were also studied based on regression equation. Results show that the melting temperatures calculated by the regression formula reproduce the experimental data in molten slag with high precision. The melting temperatures of CCLS smelting slag with high boron and low iron are less than1 100 ℃ with good melting property. The slag melting temperature ascends with increasing and, but descends with increasing, and. Especially, each factor has a significant effect on the slag melting temperature. The research results provide data support for green recycling of electronic waste.
  • [1]
    RAO M N, SULTANA R, KOTA S H. Chapter 6-electronic waste[J]. Solid & Hazardous Waste Management, 2017:209-242. http://www.sciencedirect.com/science/article/pii/B9780128097342000067
    [2]
    OLIVEIRA C R D, BERNARDES A M, GERBASE A E. Collection and recycling of electronic scrap: a worldwide overview and comparison with the Brazilian situation[J]. Waste Management, 2012, 32(8):1592-1610. doi: 10.1016/j.wasman.2012.04.003
    [3]
    ZHANG L, XU Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment[J]. Journal of Cleaner Production, 2016, 127:19-36. doi: 10.1016/j.jclepro.2016.04.004
    [4]
    梁帅表.电子垃圾的回收和利用技术现状[J].世界有色金属, 2018(6):209-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201806118
    [5]
    ISILDAR A, RENE E R, HULLEBUSCH E D V. Electronic waste as a secondary source of critical metals: Management and recovery technologies[J]. Resources Conservation & Recycling, 2017, 135:296-312.
    [6]
    CUI J, ZHANG L. Metallurgical recovery of metals from electronic waste: a review[J]. Journal of Hazardous Materials, 2008, 158(2/3):228-256. doi: 10.1016-j.jhazmat.2008.02.001/
    [7]
    高运明, 王少博, 杨映斌. FeO含量对SiO2-CaO-Al2O3-MgO(-FeO)酸性渣熔化温度的影响[J].武汉科技大学学报(自然科学版), 2013, 36(3):161-165. doi: 10.3969/j.issn.1674-3644.2013.03.001
    [8]
    ZHANG T W, WANG H M, LI G R. Effect of B2O3 Substituted for CaF2 as fluxing agent on melting temperature of converter slag[J]. Advanced Materials Research, 2012, 538/539/540/541:2203-2206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.538-541.2203
    [9]
    杨双平, 魏起书, 王琛, 等. CaO-SiO2-FeO-B2O3-MnO脱磷渣熔化温度和粘度特性[J].过程工程学报, 2018, 18(5):1013-1019. http://d.old.wanfangdata.com.cn/Periodical/hgyj201805016
    [10]
    XING W, WU L, LI S Q. Experimental study on the melting temperature characteristic of the CaO-FeO-Al2O3-SiO2 slag system[J]. Journal of University of Science and Technology Beijing, 2014, 36(5):603-607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201405006
    [11]
    张诗瀚, 王广, 杜亚星, 等.含钛铌铁精矿含碳球团熔分过程试验研究[J].有色金属科学与工程, 2018, 9(3):5-10. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2018030012
    [12]
    FAN W, ZHANG J Z, AO W Z. Effect of Al2O3 and CaF2 on melting temperature of high calcium ladle desulfurization slag[J]. Advanced Materials Research, 2015, 1094:325-328. doi: 10.4028/www.scientific.net/AMR.1094.325
    [13]
    王军.电炉渣整包形成机理及防控措施研究[D].赣州: 江西理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10407-1015425126.htm
    [14]
    熊洪进, 施哲, 丁跃华. CaO-MgO-FeO-Al2O3-SiO2-P2O5熔融还原渣熔化温度的研究[J].矿冶, 2013, 22(3):84-90. doi: 10.3969/j.issn.1005-7854.2013.03.021
    [15]
    高运明, 王少博, 杨映斌, 等. FeO含量对SiO2-CaO-Al2O3-MgO(-FeO)酸性渣熔化温度的影响[J].武汉科技大学学报, 2013, 36(3):161-165. doi: 10.3969/j.issn.1674-3644.2013.03.001
    [16]
    马永明, 连国旺.闪速炉炼铜中渣四氧化三铁的来源与控制[J].有色金属科学与工程, 2019, 10(2):25-30. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201811002
    [17]
    SUN Y, WANG H, ZHANG Z. Understanding the relationship between structure and thermophysical properties of CaO-SiO2-MgO-Al2O3 molten slags[J]. Metallurgical and Materials Transactions B, 2018, 49(2):677-687. doi: 10.1007/s11663-018-1178-y
    [18]
    赵晓辉, 张朝晖, 巨建涛, 等. CaF2-SiO2-Al2O3-CaO-MgO渣系熔化温度的实验研究[J].热加工工艺, 2013, 42(9):81-84. http://d.old.wanfangdata.com.cn/Periodical/rjggy201309027
    [19]
    YANG L L, WANG H M, ZHU X. Research on the melting temperature of CaO-SiO2-B2O3 ternary slag systems[J]. Key Engineering Materials, 2014, 575/576:370-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/KEM.575-576.370
    [20]
    赵丙新, 杨吉春, 左立杰, 等. CaO-BaO-Al2O3-SiO2-MgO-CaF2精炼渣系熔化温度研究[J].内蒙古科技大学学报, 2012, 31(4):316-319. http://d.old.wanfangdata.com.cn/Periodical/btgtxyxb201204003
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [5]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [6]CHU Shaosheng, WANG Ling, YOU Weixiong, GUO Jianjun. Effects of anisotropy on the bonding performance of the carbon-fiber-reinforced polyamide 12 coupons manufactured by selective laser sintering[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 29-36. DOI: 10.13264/j.cnki.ysjskx.2020.04.005
    [7]XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011
    [8]WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008
    [9]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [10]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
  • Cited by

    Periodical cited type(5)

    1. 喻亮,刘远,张亚坚,姜艳丽. 热轧变形对含0.5%B的6063铝合金导电率和组织性能的影响. 热加工工艺. 2024(13): 138-141 .
    2. 张鹏,胡武,李建明,黄显赞,廖斌. 液氮通入量及挤压速度对6063铝合金型材表面质量的影响. 装备制造技术. 2023(01): 86-88 .
    3. 韩双,陈继强,谢钢平,孔重良. 刮削模具对铝合金焊丝表面刮削效果的影响. 江西冶金. 2022(02): 1-5 .
    4. 王泽群,向文杰,张婷蕊,王孟君,潘学著,王岗. Fe元素对6063铝合金挤压型材表面渣粒的影响. 矿冶工程. 2021(02): 110-114 .
    5. 闫金顺,赵鸿来. 6063-TiCe铝合金散热器的挤压工艺优化. 热加工工艺. 2021(15): 84-87 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (146) PDF downloads (5) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return