Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Jinliang, WANG Longjun. Research of melting temperature of the smelting slag of copper clad laminate scrap[J]. Nonferrous Metals Science and Engineering, 2020, 11(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2020.01.008
Citation: WANG Jinliang, WANG Longjun. Research of melting temperature of the smelting slag of copper clad laminate scrap[J]. Nonferrous Metals Science and Engineering, 2020, 11(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2020.01.008

Research of melting temperature of the smelting slag of copper clad laminate scrap

More Information
  • Received Date: October 07, 2019
  • Published Date: February 28, 2020
  • Copper clad laminate scrap (CCLS) is a kind of electronic waste containing low iron and high boron. To get suitable melting temperature property for CCLS recycling process, 17 groups of slag samples were prepared by some chemical reagents, and the slag melting temperatures were measured using a RDS-2010 type intelligent test instrument for ash melting point by means of hemisphere point. Then, the mathematical formula between the melting temperature and the chemical composition of smelting slag were acquired by means of nonlinear regression analysis. The effects of the FeO content (w(Feo)), Fe3O4 content (w(Fe3O4)), Al2O3 content (w(Al2O3)), B2O3 content (w(B2O3)), CaO/SiO2 ratio (m(Cao)/m(SiO2)) on the slag melting temperatures were also studied based on regression equation. Results show that the melting temperatures calculated by the regression formula reproduce the experimental data in molten slag with high precision. The melting temperatures of CCLS smelting slag with high boron and low iron are less than1 100 ℃ with good melting property. The slag melting temperature ascends with increasing and, but descends with increasing, and. Especially, each factor has a significant effect on the slag melting temperature. The research results provide data support for green recycling of electronic waste.
  • [1]
    RAO M N, SULTANA R, KOTA S H. Chapter 6-electronic waste[J]. Solid & Hazardous Waste Management, 2017:209-242. http://www.sciencedirect.com/science/article/pii/B9780128097342000067
    [2]
    OLIVEIRA C R D, BERNARDES A M, GERBASE A E. Collection and recycling of electronic scrap: a worldwide overview and comparison with the Brazilian situation[J]. Waste Management, 2012, 32(8):1592-1610. doi: 10.1016/j.wasman.2012.04.003
    [3]
    ZHANG L, XU Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment[J]. Journal of Cleaner Production, 2016, 127:19-36. doi: 10.1016/j.jclepro.2016.04.004
    [4]
    梁帅表.电子垃圾的回收和利用技术现状[J].世界有色金属, 2018(6):209-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201806118
    [5]
    ISILDAR A, RENE E R, HULLEBUSCH E D V. Electronic waste as a secondary source of critical metals: Management and recovery technologies[J]. Resources Conservation & Recycling, 2017, 135:296-312.
    [6]
    CUI J, ZHANG L. Metallurgical recovery of metals from electronic waste: a review[J]. Journal of Hazardous Materials, 2008, 158(2/3):228-256. doi: 10.1016-j.jhazmat.2008.02.001/
    [7]
    高运明, 王少博, 杨映斌. FeO含量对SiO2-CaO-Al2O3-MgO(-FeO)酸性渣熔化温度的影响[J].武汉科技大学学报(自然科学版), 2013, 36(3):161-165. doi: 10.3969/j.issn.1674-3644.2013.03.001
    [8]
    ZHANG T W, WANG H M, LI G R. Effect of B2O3 Substituted for CaF2 as fluxing agent on melting temperature of converter slag[J]. Advanced Materials Research, 2012, 538/539/540/541:2203-2206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.538-541.2203
    [9]
    杨双平, 魏起书, 王琛, 等. CaO-SiO2-FeO-B2O3-MnO脱磷渣熔化温度和粘度特性[J].过程工程学报, 2018, 18(5):1013-1019. http://d.old.wanfangdata.com.cn/Periodical/hgyj201805016
    [10]
    XING W, WU L, LI S Q. Experimental study on the melting temperature characteristic of the CaO-FeO-Al2O3-SiO2 slag system[J]. Journal of University of Science and Technology Beijing, 2014, 36(5):603-607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201405006
    [11]
    张诗瀚, 王广, 杜亚星, 等.含钛铌铁精矿含碳球团熔分过程试验研究[J].有色金属科学与工程, 2018, 9(3):5-10. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2018030012
    [12]
    FAN W, ZHANG J Z, AO W Z. Effect of Al2O3 and CaF2 on melting temperature of high calcium ladle desulfurization slag[J]. Advanced Materials Research, 2015, 1094:325-328. doi: 10.4028/www.scientific.net/AMR.1094.325
    [13]
    王军.电炉渣整包形成机理及防控措施研究[D].赣州: 江西理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10407-1015425126.htm
    [14]
    熊洪进, 施哲, 丁跃华. CaO-MgO-FeO-Al2O3-SiO2-P2O5熔融还原渣熔化温度的研究[J].矿冶, 2013, 22(3):84-90. doi: 10.3969/j.issn.1005-7854.2013.03.021
    [15]
    高运明, 王少博, 杨映斌, 等. FeO含量对SiO2-CaO-Al2O3-MgO(-FeO)酸性渣熔化温度的影响[J].武汉科技大学学报, 2013, 36(3):161-165. doi: 10.3969/j.issn.1674-3644.2013.03.001
    [16]
    马永明, 连国旺.闪速炉炼铜中渣四氧化三铁的来源与控制[J].有色金属科学与工程, 2019, 10(2):25-30. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201811002
    [17]
    SUN Y, WANG H, ZHANG Z. Understanding the relationship between structure and thermophysical properties of CaO-SiO2-MgO-Al2O3 molten slags[J]. Metallurgical and Materials Transactions B, 2018, 49(2):677-687. doi: 10.1007/s11663-018-1178-y
    [18]
    赵晓辉, 张朝晖, 巨建涛, 等. CaF2-SiO2-Al2O3-CaO-MgO渣系熔化温度的实验研究[J].热加工工艺, 2013, 42(9):81-84. http://d.old.wanfangdata.com.cn/Periodical/rjggy201309027
    [19]
    YANG L L, WANG H M, ZHU X. Research on the melting temperature of CaO-SiO2-B2O3 ternary slag systems[J]. Key Engineering Materials, 2014, 575/576:370-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/KEM.575-576.370
    [20]
    赵丙新, 杨吉春, 左立杰, 等. CaO-BaO-Al2O3-SiO2-MgO-CaF2精炼渣系熔化温度研究[J].内蒙古科技大学学报, 2012, 31(4):316-319. http://d.old.wanfangdata.com.cn/Periodical/btgtxyxb201204003
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]HE Jianing, JIA Yongxin, YU Shuai, SU Ruiming, NIE Sainan. Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004
    [4]LI Xiaohan, HE Jianing, SU Ruiming, YANG Yuping, NIE Sainan, TAN Bing. Effect on stress corrosion cracking of alloy 7075 with two-step aging[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 69-75. DOI: 10.13264/j.cnki.ysjskx.2022.03.010
    [5]Li YanMei, Wang Mingjia, Zhang Bin, Zhang Shuang, Liu Cong, Ma Zhongren, Wan Zhiyong. Effect of carbon content on microstructure and intergranular corrosion susceptibility of C-276 alloy[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 56-63. DOI: 10.13264/j.cnki.ysjskx.2020.04.009
    [6]WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009
    [7]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [8]WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008
    [9]LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006
    [10]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017

Catalog

    Article Metrics

    Article views (146) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return