Citation: | WANG Jinliang, WANG Longjun. Research of melting temperature of the smelting slag of copper clad laminate scrap[J]. Nonferrous Metals Science and Engineering, 2020, 11(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2020.01.008 |
[1] |
RAO M N, SULTANA R, KOTA S H. Chapter 6-electronic waste[J]. Solid & Hazardous Waste Management, 2017:209-242. http://www.sciencedirect.com/science/article/pii/B9780128097342000067
|
[2] |
OLIVEIRA C R D, BERNARDES A M, GERBASE A E. Collection and recycling of electronic scrap: a worldwide overview and comparison with the Brazilian situation[J]. Waste Management, 2012, 32(8):1592-1610. doi: 10.1016/j.wasman.2012.04.003
|
[3] |
ZHANG L, XU Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment[J]. Journal of Cleaner Production, 2016, 127:19-36. doi: 10.1016/j.jclepro.2016.04.004
|
[4] |
梁帅表.电子垃圾的回收和利用技术现状[J].世界有色金属, 2018(6):209-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201806118
|
[5] |
ISILDAR A, RENE E R, HULLEBUSCH E D V. Electronic waste as a secondary source of critical metals: Management and recovery technologies[J]. Resources Conservation & Recycling, 2017, 135:296-312.
|
[6] |
CUI J, ZHANG L. Metallurgical recovery of metals from electronic waste: a review[J]. Journal of Hazardous Materials, 2008, 158(2/3):228-256. doi: 10.1016-j.jhazmat.2008.02.001/
|
[7] |
高运明, 王少博, 杨映斌. FeO含量对SiO2-CaO-Al2O3-MgO(-FeO)酸性渣熔化温度的影响[J].武汉科技大学学报(自然科学版), 2013, 36(3):161-165. doi: 10.3969/j.issn.1674-3644.2013.03.001
|
[8] |
ZHANG T W, WANG H M, LI G R. Effect of B2O3 Substituted for CaF2 as fluxing agent on melting temperature of converter slag[J]. Advanced Materials Research, 2012, 538/539/540/541:2203-2206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.538-541.2203
|
[9] |
杨双平, 魏起书, 王琛, 等. CaO-SiO2-FeO-B2O3-MnO脱磷渣熔化温度和粘度特性[J].过程工程学报, 2018, 18(5):1013-1019. http://d.old.wanfangdata.com.cn/Periodical/hgyj201805016
|
[10] |
XING W, WU L, LI S Q. Experimental study on the melting temperature characteristic of the CaO-FeO-Al2O3-SiO2 slag system[J]. Journal of University of Science and Technology Beijing, 2014, 36(5):603-607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201405006
|
[11] |
张诗瀚, 王广, 杜亚星, 等.含钛铌铁精矿含碳球团熔分过程试验研究[J].有色金属科学与工程, 2018, 9(3):5-10. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2018030012
|
[12] |
FAN W, ZHANG J Z, AO W Z. Effect of Al2O3 and CaF2 on melting temperature of high calcium ladle desulfurization slag[J]. Advanced Materials Research, 2015, 1094:325-328. doi: 10.4028/www.scientific.net/AMR.1094.325
|
[13] |
王军.电炉渣整包形成机理及防控措施研究[D].赣州: 江西理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10407-1015425126.htm
|
[14] |
熊洪进, 施哲, 丁跃华. CaO-MgO-FeO-Al2O3-SiO2-P2O5熔融还原渣熔化温度的研究[J].矿冶, 2013, 22(3):84-90. doi: 10.3969/j.issn.1005-7854.2013.03.021
|
[15] |
高运明, 王少博, 杨映斌, 等. FeO含量对SiO2-CaO-Al2O3-MgO(-FeO)酸性渣熔化温度的影响[J].武汉科技大学学报, 2013, 36(3):161-165. doi: 10.3969/j.issn.1674-3644.2013.03.001
|
[16] |
马永明, 连国旺.闪速炉炼铜中渣四氧化三铁的来源与控制[J].有色金属科学与工程, 2019, 10(2):25-30. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201811002
|
[17] |
SUN Y, WANG H, ZHANG Z. Understanding the relationship between structure and thermophysical properties of CaO-SiO2-MgO-Al2O3 molten slags[J]. Metallurgical and Materials Transactions B, 2018, 49(2):677-687. doi: 10.1007/s11663-018-1178-y
|
[18] |
赵晓辉, 张朝晖, 巨建涛, 等. CaF2-SiO2-Al2O3-CaO-MgO渣系熔化温度的实验研究[J].热加工工艺, 2013, 42(9):81-84. http://d.old.wanfangdata.com.cn/Periodical/rjggy201309027
|
[19] |
YANG L L, WANG H M, ZHU X. Research on the melting temperature of CaO-SiO2-B2O3 ternary slag systems[J]. Key Engineering Materials, 2014, 575/576:370-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/KEM.575-576.370
|
[20] |
赵丙新, 杨吉春, 左立杰, 等. CaO-BaO-Al2O3-SiO2-MgO-CaF2精炼渣系熔化温度研究[J].内蒙古科技大学学报, 2012, 31(4):316-319. http://d.old.wanfangdata.com.cn/Periodical/btgtxyxb201204003
|
[1] | FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010 |
[2] | QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016 |
[3] | ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012 |
[4] | MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012 |
[5] | XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008 |
[6] | CHU Shaosheng, WANG Ling, YOU Weixiong, GUO Jianjun. Effects of anisotropy on the bonding performance of the carbon-fiber-reinforced polyamide 12 coupons manufactured by selective laser sintering[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 29-36. DOI: 10.13264/j.cnki.ysjskx.2020.04.005 |
[7] | XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011 |
[8] | WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008 |
[9] | YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013 |
[10] | HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013 |