Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LI Changle, XUE Qingguo, DONG Zeshang, WANG Guang, ZHAO Shiqiang, WANG Jingsong. Exergy analysis on the improved gas process by gasifier injection into oxygen blast furnace[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 6-12. DOI: 10.13264/j.cnki.ysjskx.2018.02.002
Citation: LI Changle, XUE Qingguo, DONG Zeshang, WANG Guang, ZHAO Shiqiang, WANG Jingsong. Exergy analysis on the improved gas process by gasifier injection into oxygen blast furnace[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 6-12. DOI: 10.13264/j.cnki.ysjskx.2018.02.002

Exergy analysis on the improved gas process by gasifier injection into oxygen blast furnace

More Information
  • Received Date: September 21, 2017
  • Published Date: April 29, 2018
  • To reduce the cost of circulating gas CO2 separation and gas preheating in the process of oxygen blast furnace ironmaking, this paper put forward the technological process of remaking gasifier for oxygen blast furnace injection gasifier. Based on the method of exergy analysis, the main process exergy indices of traditional blast furnace (TBF) and OBF-RGG were calculated and evaluated. The results show that the exergy loss of the blast furnace unit and the whole system in TBF process are 0.911 GJ/tHM and 1.636 GJ/tHM, respectively; the exergy loss of the blast furnace unit and the whole system in OBF-RGG process are 0.298 GJ/tHM and 0.826 GJ/tHM, respectively; in addition, the exergy efficiency of the TBF and OBF-RGG processes are 83 % and 91 %, respectively. This process can realize joint production in metallurgical and chemical industries, and is of great significance for promoting industrial coproduction.
  • [1]
    IE A. Energy balance flows[EB/OL]. 2015. http://www.iea.org/Sankey/index.html.
    [2]
    DU T, SHI T, LIU Y, et al. Energy consumption and its influencing factors of iron and steel enterprise[J]. Journal of Iron and Steel Research, International, 2013, 20(8): 8-13. doi: 10.1016/S1006-706X(13)60134-X
    [3]
    徐匡迪.低碳经济与钢铁工业[J].钢铁, 2010, 45(3): 1-12. http://d.wanfangdata.com.cn/Periodical_gt201003001.aspx
    [4]
    苍大强.国内外冶金工业源头节能减排的新方法、新技术[J].有色金属科学与工程, 2015, 6(6): 1-6. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201506001
    [5]
    张建良. 氧气高炉的应用基础研究[D]. 北京: 北京科技大学, 2001: 9-29.
    [6]
    TONOMURA S. Outline of course 50[J]. Energy Procedia, 2013, 37: 7160-7167. doi: 10.1016/j.egypro.2013.06.653
    [7]
    DANLOY G, STEL JV D, SCHMOLE P. Heat and mass balances in the ULCOS Blast Furnace[C]// Proceedings of the 4th Ulcos seminar, 2008: 1-3.
    [8]
    蓝荣宗, 王静松, 韩毅华, 等.高还原势气氛下烧结矿低温还原粉化实验研究[J].有色金属科学与工程, 2012, 3(1): 5-9. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201002
    [9]
    MENG J L, TANG H Q, GUO Z C. Comprehensive mathematical model of full oxygen blast furnace with top recycle gas heated by gasifier[J]. Applied Mechanics and Materials. Trans Tech Publications, 2013, 268: 356-364. https://www.scientific.net/AMM.268-270.356.pdf
    [10]
    杜开平, 赵世强, 吴胜利.熔融气化炉风口回旋区冶炼特征的数值模拟研究[J].有色金属科学与工程, 2017, 8(2): 8-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017020002
    [11]
    贺永德.现代煤化工技术手册[M].北京:化学工业出版社, 2011.
    [12]
    司忠业, 张庆辉, 李濛濛, 等.高温煤气化转化CO2为CO[J].化工生产与技术, 2011, 18(1): 26-28. https://www.wenkuxiazai.com/doc/0f21612d58fb770bf78a557c.html
    [13]
    ROSEN M A. Second-law analysis: approaches and implications[J]. International Journal of Energy Research, 2015, 23(5): 415-429.
    [14]
    税烺, 贺东风, 艾立翔, 等.冶金生产余能回收的一种新的能量分析法[J].有色金属科学与工程, 2012, 3(1): 43-48. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201010
    [15]
    SZARGUT J. Exergy balance of metallurgical processes[J]. Arch Hutnictwa, 1961(6): 23-60.
    [16]
    AKIYAMA T, YAGI J. Methodology to evaluate reduction limit of carbon dioxide emission and minimum exergy consumption for ironmaking[J]. ISIJ international, 1998, 38(8): 896-903. doi: 10.2355/isijinternational.38.896
    [17]
    吴复忠, 蔡九菊, 张琦, 等.炼铁系统的物质流和能量流的㶲分析[J].工业加热, 2007, 36(1): 15-18. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGJS200611005136.htm
    [18]
    LIU X, CHEN LG, QIN XY, et al. Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows[J]. Energy, 2015, 93: 10-19. doi: 10.1016/j.energy.2015.09.008
    [19]
    ZHANG W, ZHANG JH, XUE ZL. Exergy analyses of the oxygen blast furnace with top gas recycling process[J]. Energy, 2017, 121: 135-146. doi: 10.1016/j.energy.2016.12.125
    [20]
    叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社, 2002.
    [21]
    巴伦.纯物质热化学数据手册[M].北京:科学出版社, 2003.
    [22]
    韩毅华, 王静松, 李燕珍, 等.炉顶煤气循环-氧气鼓风高炉综合数学模型[J].北京科技大学学报, 2011, 33(10): 1280-1286. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_bjkjdxxb201110019
  • Related Articles

    [1]SHENG Yuhang, FAN Chunchao, WANG Zengjia, LI Guangbo, YANG Jiguang. Compressive strength and microstructure analysis of cemented tailings backfill with different cementing materials[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 570-576. DOI: 10.13264/j.cnki.ysjskx.2024.04.012
    [2]KE Yuxian, ZENG Jie, HU Kaijian, SHEN Yang, YU Songtao, MA Yongchao. Triaxial mechanical properties and evolution mechanism of fully cemented unclassified tailings backfill under seepage pressure[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 422-431. DOI: 10.13264/j.cnki.ysjskx.2024.03.012
    [3]CHENG Jinshan, GUAN Huadong, WANG Guanshi, WANG Yongchao, LIN Qiang. Experimental study on the acoustic parameters of red sandstone affected by water saturation[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 105-114. DOI: 10.13264/j.cnki.ysjskx.2024.01.013
    [4]HUA Huaitian, WANG Qingya. Effects of different factors on the fluidity, strength and microstructure of superfine tailings cemented paste backfill[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 676-683. DOI: 10.13264/j.cnki.ysjskx.2023.05.010
    [5]JIN Jiefang, LIAO Zhanxiang, YANG Yi, XU Hong, ZHAO Kui. Effect of dynamic loading on the propagation velocity of stress waves in red sandstone under axial static stress[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 107-117. DOI: 10.13264/j.cnki.ysjskx.2023.01.013
    [6]ZHUO Yu-long, CHEN Chen, CAO Shi-rong, WANG Xiao-jun, DENG Shu-qiang, FENG Xiao. Study on the strength characteristics of different block stone filling material[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 72-75. DOI: 10.13264/j.cnki.ysjikx.2016.05.013
    [7]LIU Xianjun, HE Wen, XIE Yong, LIU Hao, XIE Tao. Strength of cemented classifying tailings backfilled by new cementing agent[J]. Nonferrous Metals Science and Engineering, 2015, (2): 72-79. DOI: 10.13264/j.cnki.ysjskx.2015.02.014
    [8]HE Zhe-xiang, XIAO Qi-chun, LI Xiang, XIAO Wei. Influence of lead-zinc tailings on cement properties and mineral composition[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 57-61. DOI: 10.13264/j.cnki.ysjskx.2014.02.010
    [9]ZENG Peng, ZHAO Kui, DENG Xiao-ping, SHAO Hai, WANG Ming, WU Yue-sheng, GAO Zhong. Grey correlation analysis between rock's chemical elements and compressive strength[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 79-82, 100. DOI: 10.13264/j.cnki.ysjskx.2013.01.001
    [10]DU Yan-lin, HE Wei-min, SHI Lin-ke. Gray Correlative Analysis of Factors Impacting on Shear Wave Velocity of Soil in Eastern Zhengzhou[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 12-14.
  • Cited by

    Periodical cited type(8)

    1. 邓越,王婷婷,孙清鹏,孙金峰,张少飞. 三维阵列CoO_x/CeO_2双功能催化剂的制备及其电解水性能研究. 铜业工程. 2025(01): 95-103 .
    2. 薛天雨,黄仲,谷昊辉,张海军. 高熵合金纳米电催化剂的合成. 稀有金属. 2024(01): 90-104 .
    3. 裴启飞,郭孟伟,邵伟春,王恩泽,高明远,张启波. 锌电积体系Zn-MnO_2同槽电解电化学分析. 有色金属科学与工程. 2024(03): 322-331 . 本站查看
    4. 于巧玲,刘成宝,曹一达,郑磊之,陈丰,钱君超,邱永斌,孟宪荣,陈志刚. SnO_2QDs-g-C_3N_4/C的合成及其光催化降解四环素研究. 稀有金属. 2024(08): 1144-1153 .
    5. 朱得智,徐京城. FeS@NiMoO_4异质结构筑及电催化析氢性能研究. 有色金属材料与工程. 2024(06): 60-67+74 .
    6. 侯振宇,苑慧萍,刘彧儒,沈浩,李志念,蒋利军. 化学计量比对钇-镍基储氢合金结构和储氢性能的影响. 稀有金属. 2024(12): 1671-1680 .
    7. 余德和,左川,高勇,周世平,卢军,刘锋. 电解水析氢贵金属电催化剂的研究进展. 稀有金属. 2023(11): 1573-1586 .
    8. 王诗雯,鲁杨帆,丁朝,李建波,陈玉安,谭军. Ti基催化剂改性Mg基储氢材料的研究进展. 稀有金属. 2023(12): 1642-1656 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (120) PDF downloads (3) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return