Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LI Linshan, YANG Shaohua, ZHAO Yujuan, WANG Zhaowen. Determination of La (Ⅲ) in LiCl-KCl eutectic by CP electrochemical method[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.06.001
Citation: LI Linshan, YANG Shaohua, ZHAO Yujuan, WANG Zhaowen. Determination of La (Ⅲ) in LiCl-KCl eutectic by CP electrochemical method[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.06.001

Determination of La (Ⅲ) in LiCl-KCl eutectic by CP electrochemical method

More Information
  • Received Date: July 31, 2017
  • Published Date: December 30, 2017
  • The lanthanum ions in the LiCl-KCl eutectic with 0.98 %, 2.0 % and 3.3 % LaCl3 were tested by CP electrochemical method in the 773 K argon atmosphere. The results show that the reduction potential of La (Ⅲ) on the tungsten electrode relative to the silver/silver chloride reference electrode was about -2.0~-2.2 V. By calculating the relationship between the value of the cathode peak current, transition time and the immersion depth in the CP results, the diffusion coefficient was measured to be 1.29×10-5~5.42×10-5 cm2/s at 773 K. The relative errors compared Chronoamperometry (CP) and Inductive Coupled Plasma Emission Spectrometer (ICP) of La ion concentration determination is 1.25 %, 1.11 % and 1.72 % respectively. In LiCl-KCl eutectic, the peak root current and transition time square root product of La electrodeposition show a good linear relationship with the concentration. It is feasible to apply the CP electrochemistry techniques directly to determination the ion concentration.
  • [1]
    INOUE T, KOCH L. Development of pyroprocessing and its future direction[J]. Nuclear Engineering and Technology, 2008, 40(3):183. doi: 10.5516/NET.2008.40.3.183
    [2]
    YOO J H, SEO C S, KIM E H, et al. A conceptual study of pyroprocessing for recovering actinides from spent oxide fuels[J]. Nuclear Engineering and Technology, 2008, 40(7):581-592. doi: 10.5516/NET.2008.40.7.581
    [3]
    CHANG Y I. The integral fast reactor[J]. Nuclear Technology, 1989, 88(2):129-138. doi: 10.13182/NT88-129
    [4]
    LAMBERTIN D, LACQUEMENT J, SANCHEZ S, et al. Determination of the solubility product of plutonium sesquioxide in the NaCl + CaCl2 eutectic and calculation of a potential–pO2-diagram[J]. Electrochemistry Communications, 2002, 4(5):447-450. doi: 10.1016/S1388-2481(02)00334-X
    [5]
    杨少华, 王君, 谢宝如, 等.低品位钨渣处理工艺[J].有色金属科学与工程, 2015, 6(6):29-32. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201506006
    [6]
    黄丽华, 张涛, 章晓波, 等.热处理和挤压对WE53镁合金组织与力学性能的影响[J].有色金属科学与工程, 2014, 5(6):67-70. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201406011
    [7]
    PARK Y J, BAE S E, CHO Y H, et al. UV–vis absorption spectroscopic study for on-line monitoring of uranium concentration in LiCl–KCl eutectic salt[J]. Microchemical Journal, 2011, 99(2):170-173. doi: 10.1016/j.microc.2011.04.013
    [8]
    CHO Y H, KIM T J, BAE S E, et al. Electronic absorption spectra of U (Ⅲ) ion in a LiCl–KCl eutectic melt at 450 ℃[J]. Microchemical Journal, 2010, 96(2):344-347. doi: 10.1016/j.microc.2010.06.001
    [9]
    KIM T J, CHO Y H, CHOI I K, et al. Application of a chronoamperometric measurement to the on-line monitoring of a lithium metal reduction for uranium oxide[J]. Journal of Nuclear Materials, 2008, 375(2):275-279. doi: 10.1016/j.jnucmat.2007.12.002
    [10]
    任春燕, 李冬梅, 张爱荣, 等.光谱法分析TC11钛合金用标样化学成分控制[J].中国有色金属学报, 2010(增刊1):960-964. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYY201010002086.htm
    [11]
    张密林, 陈丽军, 韩伟, 等.Pb(Ⅱ)在LiCl-KCl-MgCl2-PbCl2熔盐体系中的电化学行为[J].中国有色金属学报(英文版), 2012, 22(3):711-716. http://www.whxb.pku.edu.cn/CN/abstract/abstract29353.shtml
    [12]
    SAMIN A, WANG Z, LAHTI E, et al. Estimation of key physical properties for LaCl3 in molten eutectic LiCl–KCl by fitting cyclic voltammetry data to a BET-based electrode reaction kinetics model[J]. Journal of Nuclear Materials, 2016, 475:149-155. doi: 10.1016/j.jnucmat.2016.04.002
    [13]
    TYLKA M M, WILLIT J L, PRAKASH J, et al. Method development for quantitative analysis of actinides in molten salts[J]. Journal of The Electrochemical Society, 2015, 162(9):H625-H633. doi: 10.1149/2.0401509jes
    [14]
    TYLKA M M, WILLIT J L, PRAKASH J, et al. Application of voltammetry for quantitative analysis of actinides in molten salts[J]. Journal of The Electrochemical Society, 2015, 162(12):H852-H859. doi: 10.1149/2.0281512jes
    [15]
    ⅡZUKA M, INOUE T, SHIRAI O, et al. Application of normal pulse voltammetry to on-line monitoring of actinide concentrations in molten salt electrolyte[J]. Journal of Nuclear Materials, 2001, 297(1):43-51. doi: 10.1016/S0022-3115(01)00597-9
    [16]
    WANG Z, RAPPLEYE D, YANG C S, et al. Application of voltammetry for electroanalytical measurement of concentrations in LaCl3-MgCl2 mixtures in eutectic LiCl-KCl[J]. Journal of The Electrochemical Society, 2016, 163(10):H921-H926. doi: 10.1149/2.0351610jes
    [17]
    PAEK S, KIM T J, KIM G Y, et al. Determination of lanthanide ions in a LiCl-KCl molten salt by square wave voltammetry[J]. International Journal of Electrochemical Science, 2014, 9(9):4925-4931. http://connection.ebscohost.com/c/articles/96794369/determination-lanthanide-ions-licl-kcl-molten-salt-by-square-wave-voltammetry
    [18]
    KEITHLEY R B, WIGHTMAN R M, HEIEN M L. Multivariate concentration determination using principal component regression with residual analysis[J]. TrAC Trends in Analytical Chemistry, 2009, 28(9):1127-1136. doi: 10.1016/j.trac.2009.07.002
    [19]
    BRAD A J, FAULKNER L R. Electrochemical methods :fundamentals and applications[J]. Journal of Chemical Education, 1980, 60(1):669–676. http://is.muni.cz/publication/471413?fakulta=1431&obdobi=4443
  • Cited by

    Periodical cited type(9)

    1. 王书红,陈步东,曹飞飞,吴启军,钱纯波,徐飞星,李中平. TiO_2/CuS复合材料的制备及其光催化降解污染废水的性能研究. 有色金属科学与工程. 2024(06): 877-889 . 本站查看
    2. 龚燕燕,刘瑞麟,李建平,魏小平. 铋系光电材料及其在化学传感器中的应用. 理化检验-化学分册. 2022(09): 1099-1108 .
    3. 褚佳欢,汤嘉成,朱媛,张进. g-C_3N_4/Bi_2MoO_6复合光催化剂的制备及性能研究. 无机盐工业. 2022(11): 131-136 .
    4. 刘渊,刘忠军,姬帅,荆远,刘卓萌. 多孔基体孔结构对梯度膜层成膜及性能的影响. 稀有金属. 2021(04): 420-427 .
    5. 杨卫周,张银刚,王莹,苏薇,张波波,边卫国,李萌,韩学哲. FePt/GO纳米复合材料制备方法及对胫骨骨折患者肢体功能的影响. 中国医学物理学杂志. 2021(04): 501-504 .
    6. 张川群,周勤,徐冲,刘新,谭颖,黄微雅. Bi_2MoO_6的形貌调控及其应用研究进展. 有色金属科学与工程. 2021(02): 56-65 . 本站查看
    7. 史启明,雷易璇,屈撑囤,侯荣理,康美娟,樊长军. 基于关键词共现的国内纳米CeO_2处理污水研究主题分析. 西安石油大学学报(自然科学版). 2021(03): 113-120+126 .
    8. 王庆,张晓辉,姜怀远,刘锐珍,李萍,程健. 石墨相氮化碳量子点敏化Bi_2MoO_6复合光催化剂的制备及性能研究. 山东化工. 2021(17): 42-45 .
    9. 侯荣理,史启明,屈撑囤,李娟,雷易璇. 纳米CeO_2基材料在污水处理中的国内研究进展. 石油化工应用. 2020(12): 11-15+30 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (78) PDF downloads (16) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return