Citation: | WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011 |
TiO2/CuS composites with different molar ratios (1∶1, 1.5∶1, 2∶1, 2.5∶1, 3∶1, 3.5∶1, 4∶1) were prepared using homogeneous precipitation hydrothermal method. The representative sample (3:1) TiO2/CuS contained Cu-S characteristic bonds and Ti-O-Ti bonds by FTIR. XRD characterization showed that the (101) and (204) characteristic crystal planes containing CuS(102) and TiO2 were successfully combined. UV vis DRS characterization showed that after recombination, the absorption band edge shifted red and the light response range was enhanced. PEC and PL characterization showed that TiO2/CuS composite formed a heterojunction to delay photo-generated electron (e-)-hole (h+) recombination. After using a 350W xenon lamp to simulate the degradation of phenol and tetracycline (TC) under sunlight, the photocatalytic activity of the sample was tested. It was found that the optimal photocatalytic degradation activity was achieved when the TiO2/CuS molar ratio (3:1) was used, with degradation rates of 99.38% and 97.99% for phenol and TC, respectively. The rate constants were 0.052 48 min-1 and 0.036 43 min-1, respectively, which were 3.503 3 and 2.207 8 times higher than pure TiO2. Free radical capture experiments conducted on (3:1) TiO2/CuS samples found that the inhibitory effect of superoxide radical (O2-) was the most significant, indicating that O2- was the main active substance involved in the reaction. The heterojunction formed by the combination of TiO2 and CuS is beneficial for the separation of e--h+, promoting the increase of active free radical content and improving photocatalytic activity, which has application prospects.
[1] |
LIU R Y, WU Z, TIAN J, et al. The excellent dye-photosensitized degradation performance over hierarchical BiOCl nanostructures fabricated via a facile microwave-hydrothermal process[J]. New Journal of Chemistry, 2018, 42(1): 137-149.
|
[2] |
黄梅丽,陆爽,王晓红,等.夹心型磷钨酸盐光催化降解甲基橙[J].化学研究与应用, 2023, 35(8): 1846-1853.
|
[3] |
SATHYA M , SELVAN G , KARUNAKARAN M ,et al.Synthesis and characterization of cadmium doped on ZnO thin films prepared by SILAR method for photocatalytic degradation properties of MB under UV irradiation[J].The European Physical Journal Plus, 2023, 138: 67.
|
[4] |
SAIDUZZAMAN M , TSUCHIOKA N , NORIITAKE F, et al. Photocatalytic activity of RBi2O4NO3 (R: Tb, Dy, Er, Gd, and Ho) for phenol degradation under visible light irradiation[J].Journal of the Ceramic Society of Japan, 2021, 129(3): 181-186.
|
[5] |
LAI J H, JIANG X Y, ZHAO M, et al.Thickness-dependent layered BiOIO3 modified with carbon quantum dots for photodegradation of bisphenol A: mechanism, pathways and DFT calculation[J].Applied Catalysis B: Environmental, 2021(298): 1202622.
|
[6] |
QIAO M,YING G G,SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International,2018, 110: 160-172.
|
[7] |
CHEN H Y, LI X, MENG L W, et al. The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater[J]. Journal of Hazardous Materials, 2022, 424: 127352.
|
[8] |
CAUSANILLES A, ROJAS CANTILLNO D, EMKE E, et al. Comparison of phosphodiesterase type V inhibitors use in eight European Cities through analysis of urban wastewater[J]. Environment International, 2018, 115: 279-284.
|
[9] |
刘鹏霄,王旭,冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展[J].环境工程, 2020, 38(5):36-42.
|
[10] |
WAN K M, WANG Y, LIU C Y, et al. Facile synthesis of hierarchical Ti3C2@FeOOH nanocomposites for antimony contaminated wastewater treatment: performance, mechanisms, reutilization, and sustainability[J]. Chemical Engineering Journal, 2022, 450: 138038.
|
[11] |
霍彦廷, 舒庆. 双Z型异质结BiOI/MoO3/g-C3N4的构建及其光催化性能研究[J].有色金属科学与工程, 2023, 14(1): 74-85.
|
[12] |
杜瑞安,马小帅,张萌迪,等. 多壁碳纳米管/TiO2复合材料的合成及其光催化性能[J].有色金属科学与工程, 2019, 10(5): 75-84.
|
[13] |
李笑笑,杨凯,曾德彬,等. 微波水热法制备棒状BiPO4催化剂及其光催化性能研究[J].有色金属科学与工程, 2019, 10(4): 78-84.
|
[14] |
LIU Y B, ZHU G Q, GAO J Z, et al. Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3+-doping and the addition of Au nanoparticles: Photodegradation of phenol and bisphenol A[J]. Applied Catalysis B: Environmental, 2017, 200: 72-82.
|
[15] |
王书红, 刘新, 孔斌, 等. CeO2/Bi2MoO6纳米复合材料的制备及其增强光催化降解性能研究[J]. 有色金属科学与工程, 2019, 10(2): 68-76.
|
[16] |
LIU Z, TIAN J, ZENG D B, et al. Binary-phase TiO2 modified Bi2MoO6 crystal for effective removal of antibiotics under visible light illumination[J]. Materials Research Bulletin, 2019, 112: 336-345.
|
[17] |
RAZAK S, HIN O S, HAMZAH R. Photocatalytic degradation of methylene blue by TiO2-graphene composite[J].Solid State Phenomena, 2021, 317:257-262.
|
[18] |
NIU L S, HU Y L, HU H P, et al. Kitchen-waste-derived biochar modified nanocomposites with improved photocatalytic performances for degrading organic contaminants[J]. Environmental Research, 2022, 214:114068.
|
[19] |
赵凯燕,李锋,余长林,等.稀土单原子光催化剂制备和应用研究进展[J]. 有色金属科学与工程, 2023, 14(3): 425-438.
|
[20] |
BASSO A, BATTISTI A P, DE FÁTIMA PERALTA MUNIZ MOREIRA R, et al. Photocatalytic effect of addition of TiO2 to acrylic-based paint for passive toluene degradation[J].Environmental Technology, 2020, 41(12): 1568-1579.
|
[21] |
PENG L T, WANG X G, COROPCEANU I, et al. Titanium nitride modified photoluminescence from single semiconductor nanoplatelets[J]. Advanced Functional Materials, 2020, 30(4):1904179.
|
[22] |
LIU Y,CHEN W Q,GU L M, et al .Effects of hot-pressing parameters on microstructure and mechanical properties of composites synthesized by Al-TiO2 in-situ reaction[J].Science China Technological Sciences, 2023,66(9): 2725-2734.
|
[23] |
LI T, KONG L Y, BAI X, et al. Promoting amorphization of commercial TiO2 upon sodiation to boost the sodium storage performance[J].Journal of Energy Chemistry, 2023, 81: 379-388.
|
[24] |
ZHAN S H, CHEN D R, JIAO X L, et al. Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties [J]. Chemical Communications, 2007(20): 2043-2045.
|
[25] |
LIU B K, MU L L, HAN B, et al. Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation[J]. Applied Surface Science, 2017, 396: 1596-1603.
|
[26] |
XUE P C,LU R,LI D M,et a1.Novel CuS nanofibers using organogel as a template:controlled by binding sites[J].Langmuir,2004, 20(25): 11234-11239.
|
[27] |
YANG Z K, SONG L X, TENG Y, et a1. Ethylenediamine-modulated synthesis of hishly monodisperse copper sulfide microflowers with excellent photocatalytic performance[J].Journal of Materials Chemistry A, 2014, 2(47): 20004-20009.
|
[28] |
XU M,WU H Y,DA P M,et a1.Unconventional 0-, 1-, and 2-dimensional single-erystalline copper sulfide nanostruetures[J].Nanoscale, 2012, 4(5): 1794-1799.
|
[29] |
ZARE K, DAROUIE M, MOLLAAMIN F, et a1. An Investigation on a Mild Hydrothermal Route to CuS Nano and Submicro Structures[J]. International Journal of the Physical Sciences,2011, 6(10): 2536-2540.
|
[30] |
WAN Y,WU C Y,MIN Y L, et al. Loading of silica spheres on concaved CuS cuboctahedrons using 3-aminopropy ltrimethoxysilane as a linker[J]. Langmuir, 2007, 23(16): 8526-8530.
|
[31] |
MILLS A, O’ROURKE C, MOORE K. Powder semiconductor photocatalysis in aqueous solution: an overview of kinetics-based reaction mechanisms[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015,310: 66-105.
|
[32] |
许雅如,江禹燕,陈星仪, 等. TiO2/CuS异质结的制备及光催化降解染料废水的研究[J].中国无机分析化学, 2021, 11(5): 31-35.
|
[33] |
吴维成,蒋云胜,周丽萍. 水热法制备CuS-TiO2复合材料的光催化降解亚甲基蓝性能研究[J].化工科技, 2015, 23(6): 35-39.
|
[34] |
刘果,吴维成,卢圆圆, 等. 低温下制备具有高光催化降解罗丹明B活性的CuS/TiO2复合材料[J].人工晶体学报, 2016, 45(6): 1567-1573.
|
[35] |
曹飞,许英琴,张兴德,等.球形Cu粉粒径对谐波结构TiB2/Cu复合材料组织及性能的影响[J].铜业工程,2023(5):10-16.
|
[36] |
王九,陈波水,侯滨,等. 硫化铜纳米粒子的多种制备方法[J].无机化学报, 2001, 17(2): 275-278.
|
[37] |
GENG Q J, CUI W W. Adsorption and photocatalytic degradation of reactive brilliant red K-2BP by TiO2/AC in bubbling fluidized bed photocatalytic reactor [J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11321-11330.
|
[38] |
杜晶晶,赵军伟,程晓民,等. 高效光催化降解气相苯纳米TiO2微球的制备[J].材料工程, 2020, 48(5):100-105.
|
[39] |
贺欣豪, 李玉虎, 陈金龙, 等. 片状自组装ZnO光催化性能表征[J]. 江西冶金, 2022, 42(6): 7-14.
|
[40] |
SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
|
[41] |
耿小红. CuS和Ag掺杂CuS复合材料的制备及其光催化性能的研究[D]. 曲阜: 曲阜师范大学, 2017.
|
[42] |
YAN X L, HE J, EVANS D G, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors[J]. Applied Catalysis B: Environmental, 2005, 55(4): 243-252.
|
[43] |
LAN S, GUO N, LIU L, et al. Facile preparation of hierarchical hollow structure gamma alumina and a study of its adsorption capacity[J]. Applied Surface Science, 2013, 283: 1032-1040.
|
[44] |
WANG J X, HUANG J, XIE H L, et al. Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6354-6363.
|
[45] |
LIN Y M, LI D Z, HU J H, et al. Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite[J]. The Journal of Physical Chemistry C, 2012, 116(9): 5764-5772.
|
[46] |
LI H X., BIAN Z F, ZHU J, et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity[J]. Journal of the American Chemical Society, 2007, 129(27): 8406-8407.
|
[47] |
ASAHI R,MORIKAWA T,OHWAKI T,et a1.Visible-light photocatalysisin nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-271.
|
[48] |
ARTIGLIA L, LAZZARI D, AGNOLI S, et al. Searching for the formation of Ti–B bonds in B-doped TiO2-rutile[J]. The Journal of Physical Chemistry C, 2013, 117(25): 13163-13172.
|
[49] |
WEI D Q, ZHOU Y, JIA D C, et al. Formation of CaTiO3/TiO2 composite coating on titanium alloy for biomedical applications[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 84B(2): 444-451.
|
[50] |
SCANLON D O, DUNNILL C W, BUCKERIDGE J, et al. Band alignment of rutile and anatase TiO2[J]. Nature Materials, 2013, 12(9): 798-801.
|
[51] |
ATOUT H,BOUGUETTOUCHA A,CHEBLI D,et al.Integration of adsorption and photocatalytic degradation of methylene blue using (hbox{TiO}2) supported on granular activated carbon[J].Arabian Journal for Science and Engineering, 2017, 42(4): 1475-1486.
|
[52] |
ZHANG Y D,HUANG B J,LI P J,et a1.Tribological performance of CuS-ZnO nanocomposite film:The Effect of CuS doping[J]. Tribology International, 2013, 58: 7-11.
|
[53] |
PANG M L, ZENG H C. Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives[J]. Langmuir, 2010, 26(8): 5963-5970.
|
[54] |
YANG Z, YAN J, LIAN J B, et al. G-C3N4/TiO2 nanocomposites for degradation of ciprofloxacin under visible light irradiation[J]. Chemistry Select, 2016, 1(18): 5679-5685.
|
[55] |
MENG H, LI X X, ZHANG X, et al. Fabrication of nanocomposites composed of silver cyanamide and titania for improved photocatalytic hydrogen generation[J]. Dalton Transactions, 2015, 44(46): 19948-19955.
|
[56] |
HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96.
|
[57] |
徐竟尧,朱永龙,周鸣杰,等.微量掺杂铜元素提高铁基非晶合金降解偶氮染料稳定性[J].铜业工程,2023(3):15-22.
|
[58] |
LIU Z, TIAN J, ZENG D B, et al. A facile microwave-hydrothermal method to fabricate B doped ZnWO4 nanorods with high crystalline and highly efficient photocatalytic activity[J]. Materials Research Bulletin, 2017, 94: 298-306.
|
[59] |
LIU Y, YUAN X, WANG H Z, et al. Solvothermal synthesis of graphene/BiOCl0.75 Br0.25 microspheres with excellent visible-light photocatalytic activity[J]. RSC Advances, 2015, 5(42): 33696-33704.
|
[60] |
HAO S Y, MA X G, CUI G H. Ultrasonic synthesis of two nanostructured cadmium(Ⅱ) coordination supramolecular polymers: solvent influence luminescence and photocatalytic properties[J]. Ultrasonics Sonochemistry, 2017, 37: 414-423.
|
[61] |
LI D, PAN C. Fabrication and characterization of electrospun TiO2/CuS micro-nano-scaled composite fibers[J]. Progress in Natural Science:Materials Internationa, 2012, 22(1): 59-63.
|
[1] | MA Mengxia, YAN Xu, YAN Qun, MAO Yanli, KANG Haiyan, YAN Xiaole. Research progress on biochar-based photocatalytic materials for antibiotic degradation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 765-773. DOI: 10.13264/j.cnki.ysjskx.2024.05.017 |
[2] | ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014 |
[3] | HUANG Haohui, SUN Haipeng, FAN Qizhe, YU Changlin, JI Hongbing. Research progress in fabrication and application of S-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 68-79. DOI: 10.13264/j.cnki.ysjskx.2022.05.009 |
[4] | WANG Ying, YANG Chuanxi, WANG Xiaoning, ZHU Qing, DONG Wenping, YANG Cheng, LYU Haojie, WANG Weiliang, FAN Yuqi. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005 |
[5] | DU Ruian, MA Xiaoshuai, ZHANG Mengdi, CHEN Fanyun, YU Changlin. Synthesis of multi-walled carbon nanotubes/TiO2 composites and their photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 75-84. DOI: 10.13264/j.cnki.ysjskx.2019.05.012 |
[6] | WANG Shuhong, LIU Xin, KONG Bin, LU Jiawei, LI Hong, LIU Liequan, WANG Jinjin, CHEN Juan, HUANG Weiya. Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 68-76. DOI: 10.13264/j.cnki.ysjskx.2019.02.010 |
[7] | TAO Meixia, CHEN Ming, YANG Quan, HU Lanwen, YANG Tao. Assessment in soil heavy metal pollution and safety pre-warning based on GIS[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 92-97. DOI: 10.13264/j.cnki.ysjskx.2017.06.015 |
[8] | TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005 |
[9] | LUO Xianping, YANG Jing, WANG Chunying, HUANG Haowen, LI Zhiwei. P25 TiO2 photocatalytic degratation of ammonia nitrogen wastewater at middle and low concentration[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 100-104. DOI: 10.13264/j.cnki.ysjskx.2015.03.019 |
[10] | PENG Bing, LIU Qin, CHAI Li-yuan, ZHANG Qiang, YAN Guo-meng. CurreResearch on degradation of methyl orange by using nano-TiO2 photocatalytic cement[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 1-7. DOI: 10.13264/j.cnki.ysjskx.2012.06.008 |