Citation: | XU Jie, RUAN Tingting, MA Quanxin, SUN Rong, LU Shengli. Advances in anode modification strategies for aqueous zinc ion batteries[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 513-526. DOI: 10.13264/j.cnki.ysjskx.2024.04.006 |
Aqueous zinc ion batteries have become a promising large-scale energy storage technology because of their high safety, high ionic conductivity, high theoretical specific capacity, and low cost. However, the improvement of cycle life and the promotion of practical applications are greatly limited by dendrite growth, hydrogen evolution, and corrosion reactions in the zinc anode during the charging and discharging process in aqueous zinc-ion batteries. First analyzing the causes and basic mechanisms of these above key issues, this paper then systematically expounded on four aspects of the modification strategies of zinc anodes, including anode material construction, coating surface passivation, separator film modification, and electrolyte optimization. Moreover, this study took the design points and modification principles of the four types of modification strategies as priority and prospected the development trend of zinc anodes, providing a powerful reference for promoting the development of high-performance aqueous zinc-ion batteries.
[1] |
ZAMPARDI G, LA MANTIA F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries[J]. Nature Communications, 2022, 13(1): 687.
|
[2] |
LIU M Y, YUAN W T, MA G Q, et al. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angewandte Chemie International Edition, 2023, 62(27): e202304444.
|
[3] |
SHI Y C, CHEN Y, SHI L, et al. An overview and future perspectives of rechargeable zinc batteries[J]. Small, 2020, 16(23): 2000730.
|
[4] |
陈诺,郭轲,郭玉玺,等. 铝离子电池电解质研究进展[J]. 有色金属科学与工程,2023,14(2):189-201.
|
[5] |
刘涛,赖中元,李小成,等. 二氧化钛涂层改性锌负极及其在水系锌离子电池中的应用[J]. 有色金属科学与工程,2023,14(1):51-56.
|
[6] |
LI H F, MA L T, HAN C P, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.
|
[7] |
VERMA V, KUMAR S, MANALASTAS W, et al. Progress in rechargeable aqueous zinc-and aluminum-ion battery electrodes: Challenges and outlook[J]. Advanced Sustainable Systems, 2019, 3(1): 1800111.
|
[8] |
KONAROV A, VORONINA N, JO J H, et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2620-2640.
|
[9] |
CHEN Q, JIN J L, KOU Z K, et al. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density[J]. Small, 2020, 16(14): 2000091.
|
[10] |
LU Y Z, WANG J, ZENG S Q, et al. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(38): 21678-21683.
|
[11] |
RUAN T, LU S, LU J, et al. Unraveling the intercalation chemistry of multi-electron reaction for polyanionic cathode Li3V2(PO4)3[J]. Energy Storage Materials, 2023, 55: 546-555.
|
[12] |
LIANG G J, MO F N, JI X L, et al. Non-metallic charge carriers for aqueous batteries[J]. Nature Reviews Materials, 2021, 6(2): 109-123.
|
[13] |
DI S L, NIE X Y, MA G Q, et al. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase[J]. Energy Storage Materials, 2021, 43: 375-382.
|
[14] |
LIU N N, WU X, ZHANG Y, et al. Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries[J]. Advanced Science, 2020, 7(14): 2000146.
|
[15] |
蓝彬栩,张文卫,罗平,等. 水系锌离子电池负极材料的研究进展[J]. 材料导报,2020,34(13):13068-13075.
|
[16] |
BLANC L E, KUNDU D, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799.
|
[17] |
LI Y G, GONG M, LIANG Y Y, et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts[J]. Nature Communications, 2013, 4(1): 1805.
|
[18] |
SHAN L T, YANG Y Q, ZHANG W Y, et al. Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery[J]. Energy Storage Materials, 2019, 18: 10-14.
|
[19] |
MAINAR A R, LEONET O, BENGOECHEA M, et al. Alkaline aqueous electrolytes for secondary zinc-air batteries: An overview[J]. International Journal of Energy Research, 2016, 40(8): 1032-1049.
|
[20] |
KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 10(1): 1-8.
|
[21] |
TAN Y, AN F Q, LIU Y C, et al. Reaction kinetics in rechargeable zinc-ion batteries[J]. Journal of Power Sources, 2021, 492: 229655.
|
[22] |
YAMAMOTO T, SHOJI T. Rechargeable Zn|ZnSO4| MnO2-type cells[J]. Inorganica Chimica Acta, 1986, 117(2): L27-L28.
|
[23] |
XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935.
|
[24] |
LI S W, LIU Y C, ZHAO X D, et al. Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage[J]. Angewandte Chemie International Edition, 2021, 60(37): 20286-20293.
|
[25] |
LI S W, LIU Y C, ZHAO X D, et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries[J]. Advanced Materials, 2021, 33(12): 2007480.
|
[26] |
WANG T H, LI S W, WENG X E, et al. Ultrafast 3D hybrid-ion transport in porous V2O5 cathodes for superior-rate rechargeable aqueous zinc batteries[J]. Advanced Energy Materials, 2023, 13(18): 2204358.
|
[27] |
LIU Y, WU X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries[J]. Journal of Energy Chemistry, 2021, 56: 223-237.
|
[28] |
孙晴,高筠. 水系锌离子电池的最新研究进展[J]. 材料导报,2022,36(17):5-11.
|
[29] |
YUFIT V, TARIQ F, EASTWOOD D S, et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries[J]. Joule, 2019, 3(2): 485-502.
|
[30] |
ZHANG Q, LUAN J Y, TANG Y G, et al. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(32): 13180-13191.
|
[31] |
LIU Z, QIN L, LU B, et al. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries[J]. ChemSusChem, 2022, 15(10): e202200348.
|
[32] |
GUO N, HUO W J, DONG X Y, et al. A review on 3D zinc anodes for zinc ion batteries[J]. Small Methods, 2022, 6(9): 2200597.
|
[33] |
BAYAGUUD A, FU Y P, ZHU C B. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies[J]. Journal of Energy Chemistry, 2022, 64: 246-262.
|
[34] |
LI C, XIE X, LIANG S, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc‐ion batteries[J]. Energy & Environmental Materials, 2020, 3(2): 146-159.
|
[35] |
HE W, ZUO S, XU X, et al. Challenges and strategies of zinc anode for aqueous zinc-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(5): 2201-2217.
|
[36] |
WANG T, LI C, XIE X, et al. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives[J]. ACS Nano, 2020, 14(12): 16321-16347.
|
[37] |
GUO W B, CONG Z F, GUO Z H, et al. Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries[J]. Energy Storage Materials, 2020, 30: 104-112.
|
[38] |
CHEN T, WANG Y, YANG Y, et al. Heterometallic seed‐mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries[J]. Advanced Functional Materials, 2021, 31(24): 2101607.
|
[39] |
LIU Y, ZHOU X M, WANG X, et al. Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries[J]. Chemical Engineering Journal, 2021, 420: 129629.
|
[40] |
AN Y L, TIAN Y, XIONG S L, et al. Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries[J]. ACS Nano, 2021, 15(7): 11828-11842.
|
[41] |
QIU N, YANG Z, XUE R, et al. Toward a high-performance aqueous zinc ion battery: Potassium vanadate nanobelts and carbon enhanced zinc foil[J]. Letters, 2021, 21(7): 2738-2744.
|
[42] |
WANG L Y, HUANG W W, GUO W B, et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries[J]. Advanced Functional Materials, 2022, 32(1): 2108533.
|
[43] |
FANG Y X, HAN K, WANG Z, et al. Constructing a well-wettable interface on a three-dimensional copper foam host with reinforced copper nanowires to stabilize zinc metal anodes[J]. Journal of Materials Chemistry A, 2023, 11(25): 13742-13753.
|
[44] |
LI Y, WU L S, DONG C, et al. Manipulating horizontal Zn deposition with graphene interpenetrated Zn hybrid foils for dendrite-free aqueous zinc ion batteries[J]. Energy & Environmental Materials, 2023, 6(5): e12423.
|
[45] |
YUAN G Q, LIU Y Y, XIA J, et al. Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries[J]. Nano Research, 2023, 16: 6881-6889.
|
[46] |
YANG Z F, ZHANG Q, LI W B, et al. A semi-solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(3): e202215306.
|
[47] |
CUI M W, XIAO Y, KANG L T, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(9): 6490-6496.
|
[48] |
DENG C B, XIE X S, HAN J W, et al. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode[J]. Advanced Functional Materials, 2020, 30(21): 2000599.
|
[49] |
YUKSEL R, BUYUKCAKIR O, SEONG W K, et al. Metal-organic framework integrated anodes for aqueous zinc-ion batteries[J]. Advanced Energy Materials, 2020, 10(16): 1904215.
|
[50] |
ZHOU Z B, ZHANG Y M, CHEN P, et al. Graphene oxide-modified zinc anode for rechargeable aqueous batteries[J]. Chemical Engineering Science, 2019, 194: 142-147.
|
[51] |
ZHAO Z M, ZHAO J W, HU Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6): 1938-1949.
|
[52] |
ZHENG X H, AHMAD T, CHEN W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries[J]. Energy Storage Materials, 2021, 39: 365-394.
|
[53] |
DU W C, ANG E H X, YANG Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2020, 13(10): 3330-3360.
|
[54] |
CHEN P, YUAN X H, XIA Y B, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries[J]. Advanced Science, 2021, 8(11): 2100309.
|
[55] |
KANG L Z, ZHENG J L, YUAN H D, et al. High performance Zn anodes enabled by a multifunctional biopolymeric protective layer for a dendrite-free aqueous zinc-based battery[J]. Journal of Materials Chemistry A, 2023, 11(25): 13266-13274.
|
[56] |
HE H B, TONG H, SONG X Y, et al. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(16): 7836-7846.
|
[57] |
LIU X Y, LU Q Q, YANG A K, et al. High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries[J]. Chinese Chemical Letters, 2023, 34(6): 107703.
|
[58] |
WU C P, XIE K X, REN K X, et al. Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries[J]. Dalton Transactions, 2020, 49(48): 17629-17634.
|
[59] |
ZHOU X, CHEN R P, CUI E H, et al. A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes[J]. Energy Storage Materials, 2023, 55: 538-545.
|
[60] |
WANG T T, WANG P J, PAN L, et al. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement[J]. Advanced Energy Materials, 2023, 13(5): 2203523.
|
[61] |
LI B, XUE J, HAN C, et al. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 599: 467-475.
|
[62] |
XU P J, WANG C Y, ZHAO B X, et al. An interfacial coating with high corrosion resistance based on halloysite nanotubes for anode protection of zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 602: 859-867.
|
[63] |
LI B, XUE J, LV X, et al. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode[J]. Surface & Coatings Technology, 2021, 421: 127367.
|
[64] |
GUO W, ZHANG Y, TONG X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries[J]. Materials Today Energy, 2021, 20: 100675.
|
[65] |
ZHANG Y, YANG G, LEHMANN M L, et al. Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime[J]. Nano Letters, 2021, 21(24): 10446-10452.
|
[66] |
SONG Y, RUAN P, MAO C, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries[J]. Nanomicro Lett, 2022, 14(1): 218.
|
[67] |
NI Q, KIM B, WU C A, et al. Non-electrode components for rechargeable aqueous zinc batteries: Electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators[J]. Advanced Materials, 2022, 34(20): 2108206.
|
[68] |
QIN Y, LIU P, ZHANG Q, et al. Advanced filter membrane separator for aqueous zinc-ion batteries[J]. Small, 2020, 16(39): 2003106.
|
[69] |
CAO J, ZHANG D D, GU C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries[J]. Advanced Energy Materials, 2021, 11(29): 2101299.
|
[70] |
DONG Y, MIAO L C, MA G Q, et al. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries[J]. Chemical Science, 2021, 12(16): 5843-5852.
|
[71] |
MA G Q, MIAO L C, DONG Y, et al. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries[J]. Energy Storage Materials, 2022, 47: 203-210.
|
[72] |
NIE X Y, MIAO L C, YUAN W T, et al. Cholinium cations enable highly compact and dendrite-free Zn metal anodes in aqueous electrolytes[J]. Advanced Functional Materials, 2022, 32(32): 2203905.
|
[73] |
ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894-12901.
|
[74] |
LI D, CAO L S, DENG T, et al. Design of a solid electrolyte interphase for aqueous Zn batteries[J]. Angewandte Chemie International Edition, 2021, 60(23): 13035-13041.
|
[75] |
YANG W, DU X, ZHAO J, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries[J]. Joule, 2020, 4(7): 1557-1574.
|
[76] |
LIU S L, MAO J F, PANG W K, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries[J]. Advanced Functional Materials, 2021, 31(38): 2104281.
|
[77] |
QIU Q L, CHI X W, HUANG J Q, et al. Highly stable plating/stripping behavior of zinc metal anodes in aqueous zinc batteries regulated by quaternary ammonium cationic salts[J]. Chemelectrochem, 2021, 8(5): 858-865.
|
[78] |
XU W N, ZHAO K N, HUO W C, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. Nano Energy, 2019, 62: 275-281.
|
[79] |
姬慧敏,谢春霖,张旗,等. 水系锌离子电池负极集流体关键问题及设计策略[J]. 化学学报,2023,81(1):29-41.
|
[1] | CHEN Nuo, GUO Ke, GUO Yuxi, WANG Wei, JIAO Shuqiang. Research progress of electrolytes for aluminum-ion batteries[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 189-201. DOI: 10.13264/j.cnki.ysjskx.2023.02.005 |
[2] | LIU Tao, LAI Zhongyuan, LI Xiaocheng, HAN Feng, WANG Jianqiu. Titanium dioxide coating-modified zinc cathode and its application in aqueous zinc ion batteries[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 51-56. DOI: 10.13264/j.cnki.ysjskx.2023.01.007 |
[3] | LIAO Ruixiong, LI Ziwei, LEI Jingang, LIU Zeyuan, WANG Haizhong, LAI Fulin, WANG Boyuan, ZHANG Qian. LiF doping improving the ionic conductivity of the Li1.1Ta0.9Zr0.1SiO5 solid electrolyte at room temperature[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 58-66. DOI: 10.13264/j.cnki.ysjskx.2022.06.008 |
[4] | SHI Huixian, SHI Chunyang, YANG Yagang, QU Yasong, ZHANG Lei, YU Xiaohua, XIE Gang. Study on the process of preparing high purity alumina from aluminum air battery electrolyte[J]. Nonferrous Metals Science and Engineering, 2020, 11(1): 8-14. DOI: 10.13264/j.cnki.ysjskx.2020.01.002 |
[5] | XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011 |
[6] | ZHENG Quan. Volatilization characteristics of magnesium electrolyte[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 47-51. DOI: 10.13264/j.cnki.ysjskx.2015.06.009 |
[7] | ZHANG Hui-qing, ZHOU Kang-gen, WU Yun-dong. Removal of Cr6+and Mn2+from electrolytic manganese wastewater[J]. Nonferrous Metals Science and Engineering, 2014, 5(3): 9-15. DOI: 10.13264/j.cnki.ysjskx.2014.03.002 |
[8] | TONG Chang-ren, GAN Xiu-jiang, HUANG Xi-lin. On the Determination of Bismuth in Electrolytic Solution of Copper by Thiourea-Fluoride Spectrophotometry[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 36-38. |
[9] | Mao Jian-hui, Peng Guang-huai. Effects of Proportion of Electrolyte on 10KA Molten Salt Electrolyse in Producing Neodymium[J]. Nonferrous Metals Science and Engineering, 2007, 21(3): 20-22. |
[10] | DONG Yong_quan, HUANG Wan_fu. Application and Development of Diaphragm Electrolysis Technology[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 35-38. |