Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LAI Ruisen, QIU Xianhui, ZHAO Guanfei, YANG Wenhui, QIU Tingsheng. The flotation behavior and mechanism of tungsten minerals with benzohydroxamic acid-cocamine combined collectors[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 115-122. DOI: 10.13264/j.cnki.ysjskx.2024.01.014
Citation: LAI Ruisen, QIU Xianhui, ZHAO Guanfei, YANG Wenhui, QIU Tingsheng. The flotation behavior and mechanism of tungsten minerals with benzohydroxamic acid-cocamine combined collectors[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 115-122. DOI: 10.13264/j.cnki.ysjskx.2024.01.014

The flotation behavior and mechanism of tungsten minerals with benzohydroxamic acid-cocamine combined collectors

More Information
  • Received Date: December 18, 2022
  • Revised Date: May 17, 2023
  • Through single mineral flotation experiment, artificial mixed minerals flotation experiment, adsorption capacity and infrared spectrum measurement, the flotation behavior of tungsten minerals and the adsorption mechanism on tungsten minerals surface of benzohydroxamic acid (BHA) and cocamine (ACO) combined collector were studied. The results show that in the range of pH=2.0-12.0, the BHA-ACO combined collector has a stronger collecting ability than BHA on tungsten minerals. The optimum pH value of the combined collector is 10.0, and the recovery rate of wolframite flotation and scheelite flotation is 79.80% and 76.68%, which are much higher than the recovery rates of wolframite flotation and scheelite flotation of 37.09% and 53.96% when BHA is used alone. ACO could increase the adsorption capacity of BHA on the surface of tungsten minerals, and the BHA-ACO combined collector had significant synergistic effect on wolframite and scheelite surface, resulting in strong chemical adsorption.
  • [1]
    董娟, 罗婷, 王翔, 等. 供需协同下江西省钨产业结构调整与升级对策[J]. 有色金属科学与工程,2019,10(4): 106-112.
    [2]
    刘健聪, 熊道陵, 张建平, 等. 钨冶炼渣中铁、锰浸出工艺研究[J]. 有色金属科学与工程, 2018,9(4): 14-20.
    [3]
    孙伟, 卫召, 韩海生, 等. 钨矿浮选化学及其实践[J]. 金属矿山, 2021(1): 24-41.
    [4]
    周源, 胡文英. 某低品位黑钨细泥浮-重-浮联合流程分选试验研究[J]. 有色金属科学与工程, 2013, 4(5): 58-63.
    [5]
    尚兴科, 蓝卓越, 周晓彤, 等. 表面结构与溶液离子对黑钨矿浮选影响的研究现状[J]. 中国钨业, 2015,30(2): 31-35.
    [6]
    周晓彤, 李英霞, 邓丽红, 等. 白钨矿与含钙脉石浮选分离的研究[J]. 中国矿业,2014,23(2): 107-111,115.
    [7]
    卢继鹰, 王忠康, 刘永, 等. 黑钨矿浮选常用药剂研究现状及展望[J]. 现代矿业,2016,32(7): 71-73.
    [8]
    周衍波, 朱巨建, 林楷, 等. 黑钨矿捕收剂的应用及其使用后水中残留物的去除[J]. 当代化工,2016,45(2): 269-271,275.
    [9]
    许海峰, 李文风, 陈雯. 钨矿浮选捕收剂研究现状及新药剂的制备与工业应用[J]. 中国钨业, 2019,34(1): 37-44,57.
    [10]
    曹惠昌. 微细粒黑钨矿选别工艺及浮选药剂研究现状[J].现代矿业, 2017,33(6): 110-116.
    [11]
    许道刚, 张雪峰, 黄江, 等. 我国白钨矿与黑钨矿浮选研究现状与趋势[J]. 中国钨业, 2014, 29(5): 25-29.
    [12]
    许鸿国, 翁存建, 高莉, 等. 白钨矿浮选药剂研究现状及展望[J]. 有色金属科学与工程, 2014, 5(3): 76-80.
    [13]
    付广钦, 周晓彤. 新型脂肪酸协同螯合类捕收剂对黑钨矿与脉石矿物浮选行为的影响[J]. 矿产保护与利用, 2021,41(2): 28-33.
    [14]
    邱显扬, 高玉德, 韩兆元. 组合捕收剂对黑钨矿颗粒间相互作用的影响研究[J]. 矿冶工程, 2012, 32(6): 47-50.
    [15]
    WU Q W, ZHU Y M, SUN W H, et al. Adsorption mechanism of efficient flotation separation of scheelite from calcite by a novel mixed collector[J].Journal of Molecular Liquids,2022,345: 116994.
    [16]
    WANG J J, GAO Z Y, HAN H S, et al. Impact of NaOL as an accelerator on the selective separation of scheelite from fluorite using a novel self-assembled Pb-BHA-NaOL collector system[J].Applied Surface Science,2021,537:147778.
    [17]
    邱廷省, 宋宜富, 邱仙辉, 等. 白钨矿浮选体系中大分子有机抑制剂的抑制性能[J]. 中国有色金属学报, 2017,27(7): 1527-1534.
    [18]
    YAN W P, LIU C, AIG H, et al. Flotation separation of scheelite from calcite using mixed collectors[J]. International Journal of Mineral Processing, 2017,169: 106-110.
    [19]
    WANG J J, GAO Z Y, GAO Y S, et al. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors[J]. Minerals Engineering, 2016, 98: 261-263.
    [20]
    WANG L, LIU R Q, HU Y H, et al. Adsorption of mixed DDA/NaOL surfactants at the air/water interface by molecular dynamics simulations[J]. Chemical Engineering Science,2016,155: 167-174.
    [21]
    陈远道, 刘国全, 何旭元, 等. 水溶液中苯甲羟肟酸含量的紫外光度测定法[J]. 湖南文理学院学报(自然科学版),2008(2): 46-48.
    [22]
    黄建平, 钟宏, 邱显杨, 等. 环己甲基羟肟酸对黑钨矿的浮选行为与吸附机理[J]. 中国有色金属学报,2013,23(7):2033-2039.
    [23]
    钟传刚, 高玉德, 邱显扬, 等. 金属离子对苯甲羟肟酸浮选黑钨矿的影响[J]. 中国钨业, 2013,28(2): 22-26.
    [24]
    何桂春, 冯金妮, 毛美心, 等. 组合捕收剂在锂云母浮选中的应用研究[J].非金属矿,2013,36(4): 29-31.
    [25]
    高玉德, 邱显扬, 夏启斌. 等. 苯甲羟肟酸与黑钨矿作用机理的研究[J]. 广东有色金属学报,2001(2): 92-95.
    [26]
    高玉德, 邱显扬, 韩兆元. 羟肟酸浮选白钨矿的机理[J]. 中国有色金属学报, 2015, 25(5): 1339-1344.
  • Related Articles

    [1]LI Guangtao null, LIU Yan null, ZHANG Tingan null, LIN Shengnan null. Preparation of calcium carbonate by ion-exchange membrane carbonization electrolysis of calcium-containing magnesium slag solution[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 25-34. DOI: 10.13264/j.cnki.ysjskx.2025.01.004
    [2]ZENG Chen, ZENG Jia, XU Jin, LUO Diqiang, CUI Jiaxin, E Dianyu. Numerical simulation on leaching characteristics of ion-absorbed rare earth ore[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 932-940. DOI: 10.13264/j.cnki.ysjskx.2024.06.016
    [3]ZOU Guoliang, LIU Nana. Evaluation on the mining technology of ion-adsorption rare earth ore based on combined weighting-cloud model[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 88-95. DOI: 10.13264/j.cnki.ysjskx.2021.04.012
    [4]CAO Caifang, LI Xiaowen, NIE Huaping, LI Laichao, ZHANG Xing, QIU Tingsheng. Study on thermodynamics of anions′ dynamic exchange of tungsten metallurgy system by ion chromatography[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2019.04.001
    [5]LIU Jili, XIE Hongwei, WANG Jinxia, YIN Huayi, SONG Qiushi, NING Zhiqiang. Research progress on separation and purification of cobalt and nickel ions in aqueous electrolyte[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.201901.001
    [6]CHI Chunrong, DONG Shanyan, LI Qijia, LIU Zuwen. Research progress on activated sludge mathematical model[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 111-117, 124. DOI: 10.13264/j.cnki.ysjskx.2017.04.019
    [7]LUO Xian-ping, ZHANG Yan, DENG Yang-wu. Several common ion exchange materials and their application in treatment of ammonia-nitrogen wastewater[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 51-54,74. DOI: 10.13264/j.cnki.ysjskx.2012.06.021
    [8]WANG Rui-xiang, ZENG Oing-yun, LIU Jian-hua. An Experimental Investigation of the Treatment of Complexed Copper-containing Wastewater by Ion-exchange[J]. Nonferrous Metals Science and Engineering, 2003, 17(1): 35-36, 40.
    [9]LIU Jian_hua, WANG Rui_xiang. Study on Treatment of Lean-copper Leach with Ion_exchange[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 22-23, 42.

Catalog

    Article Metrics

    Article views (79) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return