Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Yong, HE Xiaojuan, HE Yuncai, WANG Yuting. Solid-state reaction kinetics and water corrosion resistance of magnesia-alumina spinel by sinering secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 17-24. DOI: 10.13264/j.cnki.ysjskx.2022.06.003
Citation: ZHANG Yong, HE Xiaojuan, HE Yuncai, WANG Yuting. Solid-state reaction kinetics and water corrosion resistance of magnesia-alumina spinel by sinering secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 17-24. DOI: 10.13264/j.cnki.ysjskx.2022.06.003

Solid-state reaction kinetics and water corrosion resistance of magnesia-alumina spinel by sinering secondary aluminum dross

More Information
  • Received Date: June 06, 2021
  • Revised Date: September 14, 2021
  • Available Online: January 15, 2023
  • Using secondary aluminum dross from the recycled aluminum industry as the main raw material, the preparation of magnesium-aluminum-spinel by sintering secondary aluminum dross was studied. The phase analysis of the material shows that the secondary aluminum dross can be sintered to prepare magnesia alumina spinel. According to the suitable ratio of raw materials, the materials were sintered at different temperatures, and the influence of sintering temperature on the water corrosion resistance of the materials was further discussed. The apparent activation energy of the crystallization reaction is Ea=104.54 kJ/mol. After sintering at 1 200~1 500 ℃ for 3 h, the kinetic equations of the hydration reaction are in the order of (1-(1-5.76η)1/2)2=kt, (1-(1-6.15η)1/2)2=kt, (1-(1-6.43η)1/2)2=kt and (1-(1-6.34η)1/2)2=kt. After sintering at 1 400 ℃ for 3 h, the hydration rate of the material is 8.83%, which is still far from the standard of a high water resistance material (0.2%).
  • [1]
    焦占忠, 张凤炳, 赵刚. 铝灰的资源化利用前景广阔[J]. 资源再生, 2018(10): 34-35. doi: 10.3969/j.issn.1673-7776.2018.10.012
    [2]
    张勇, 何小娟, 喻成龙, 等. 二次铝灰烧结制备镁铝尖晶石材料[J]. 有色金属科学与工程, 2021, 12(6): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202106006.htm
    [3]
    ZHANG Y, GUO Z H, HAN Z Y, et al. Feasibility of aluminium recovery and MgAl2O4 spinel synthesis from secondary aluminium dross[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(3): 309-318. doi: 10.1007/s12613-019-1739-3
    [4]
    杜永立. 中国再生铝产业状况及发展趋势[J]. 有色金属再生与利用, 2004(1): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZS200401014.htm
    [5]
    MANFREDI O, WUTH W, BOHLINGER I. Characterizing the physical and chemical properties of aluminum dross[J]. JOM, 1997, 49(11): 48-51. doi: 10.1007/s11837-997-0012-9
    [6]
    李帅, 刘万超, 刘中凯, 等. 铝灰处理技术现状及展望[J]. 有色金属(冶炼部分), 2018(10): 25-30. doi: 10.3969/j.issn.1007-7545.2018.10.007
    [7]
    ZHANG Y, GUO Z H, HAN Z Y, et al. Effect of rare earth oxides doping on MgAl2O4 spinel obtained by sintering of secondary aluminium dross[J]. Journal of Alloys and Compounds, 2018, 735: 2597-2603. doi: 10.1016/j.jallcom.2017.11.356
    [8]
    颜正国, 于景坤. 添加剂对镁铝尖晶石烧结性能的影响[J]. 材料科学, 2019(12): 1048-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-WGJS605.007.htm
    [9]
    李登奇, 秦庆伟, 刘文科, 等. 从再生铝二次铝灰中浸出铝的动力学试验研究[J]. 湿法冶金, 2020, 39(5): 371-375. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202005004.htm
    [10]
    王修慧, 曹冬鸽, 赵明彪, 等. 固相反应法制备高纯镁铝尖晶石粉体[J]. 大连交通大学学报, 2008, 29(1): 105-108. doi: 10.3969/j.issn.1673-9590.2008.01.024
    [11]
    朱航宇, 李正邦, 王堇青, 等. CaCO3与MoO3固相反应机理[J]. 过程工程学报, 2012, 12(2): 227-230. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201202010.htm
    [12]
    樊涌, 李宇, 苍大强, 等. 污泥和高炉渣协同制备微晶玻璃[J]. 北京科技大学学报, 2013, 35(7): 902-905. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201307010.htm
    [13]
    张厚兴, 周宁生, 孙加林, 等. 反应烧结法制备MgAlON的合成机理及烧结行为的研究[J]. 耐火材料, 2002(5): 252-254. https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL200205002.htm
    [14]
    张勇, 郭朝晖, 王硕, 等. 响应曲面法对铝灰中AlN的水解行为[J]. 中国有色金属学报, 2016, 26(4): 919-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201604025.htm
    [15]
    刘晓红, 刘守信, 邹美琪, 等. 从铝灰中回收铝制备超细氧化铝粉体过程研究[J]. 轻金属, 2009(12): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200912004.htm
    [16]
    李菲, 郭学益, 田庆华. 二次铝灰制备α-Al2O3工艺[J]. 北京科技大学学报, 2012, 34(4): 383-389. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201204004.htm
    [17]
    DAS B R, DASH B, TRIPATHY B C, et al. Production of η-alumina from waste aluminium dross[J]. Minerals Engineering, 2007, 20(3): 252-258.
    [18]
    卢红霞, 曾昭桓, 侯铁翠, 等. 纳米Al粉热反应特性的研究[J]. 人工晶体学报, 2007, 36(3): 639-640. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT200703033.htm
    [19]
    王谋, 梁慧敏, 徐静. 片状铝粉氧化DSC/DTG分析[J]. 安全与环境学报, 2013, 13(2): 207-208. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201302045.htm
    [20]
    张勇, 何小娟, 喻成龙, 等. 二次铝灰烧结制备镁铝尖晶石材料[J]. 有色金属科学与工程, 2021, 12(6): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202106006.htm
    [21]
    刘大强, 刘桂媛, 何云龙. 铝灰生产棕刚玉的工艺[J]. 哈尔滨理工大学学报, 1996, 1(2): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX199605011.htm
    [22]
    刘瑞琼, 智利彪, 智国彪. 利用铝灰低温冶炼制备棕刚玉[J]. 耐火材料, 2014, 48(2): 145-146. https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201402020.htm
    [23]
    HAN Z Y, GUO Z H, ZHANG Y, et al. Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation[J]. Resources, Conservation and Recycling, 2018, 129: 20-26.
    [24]
    ZHANG Y, GUO Z H, HAN Z Y, et al. Effects of AlN hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross using response surface methodology[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12): 2574-2581.
    [25]
    ZHOU Z L, DU X M, WANG S Y, et al. Cement grout transport within sand with fractal characteristics considering filtration[J]. European Journal of Environmental and Civil Engineering, 2017, 21: 1-23.
    [26]
    ZHOU Z L, DU X M, CHEN Z, et al. Grouting diffusion of chemical fluid flow in soil with fractal characteristics[J]. Journal of Central South University, 2017, 24(5): 1190-1196.
    [27]
    吴刚. 材料结构表征及应用[M]. 北京: 化学工业出版社, 2004.
    [28]
    ALINEJAD B, SARPOOLAKY H, BEITOLLAHI A, et al. Synthesis and characterization of nanocrystalline MgAl2O4 spinel via sucrose process[J]. Materials Research Bulletin, 2008, 43(5): 1188-1194.
    [29]
    CHEN Y F, WANG M C, HONG M H. Transformation kinetics for mullite in kaolin-Al2O3 ceramics[J]. Journal of Materials Research, 2003, 18(6): 1355-1362.
    [30]
    邱桂博. 再生镁钙砖在水泥窑中应用的基础研究[D]. 北京: 北京科技大学, 2015.
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]SU Lijuan, XU Jifang, ZUO Long. Thermodynamic calculation of precipitation behavior of chromium spinel in the CaO-SiO2-MgO-Al2O3-FeO-Cr2O3 slag system[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 302-310. DOI: 10.13264/j.cnki.ysjskx.2023.03.002
    [3]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [4]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [5]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [6]TONG Zhifang, JIA Zhiheng, ZENG Qingpo, XU Congcong. Thermodynamics of the effects of slag compositions on the precipitation of chromium spinel in CaO-MgO-Al2O3-Si2O-Cr2O3-FeO-TiO2 slag system[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 1-10. DOI: 10.13264/j.cnki.ysjskx.2020.03.001
    [7]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [8]LIN Shipeng, LIU Jinyan, JI Yanli. Research status of CNTs reinforced aluminum matrix composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 57-62. DOI: 10.13264/j.cnki.ysjskx.2017.02.010
    [9]CHAI Li-yuan, WANG Hai-tang, YOU Xiang-yu, WANG Qing-wei, SHU Yu-de. Thermodynamics equilibrium of M(Ⅱ)-S-H2O system[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 8-13. DOI: 10.13264/j.cnki.ysjskx.2012.05.020
    [10]XU Fang. Determination of Mn in Aluminum Bronze by ICP-AES[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 80-82.

Catalog

    Article Metrics

    Article views (230) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return