Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Buxiang, SHU Qing. Research progress in single-atomic electrocatalytic hydrogen evelution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 92-100. DOI: 10.13264/j.cnki.ysjskx.2022.05.011
Citation: WANG Buxiang, SHU Qing. Research progress in single-atomic electrocatalytic hydrogen evelution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 92-100. DOI: 10.13264/j.cnki.ysjskx.2022.05.011

Research progress in single-atomic electrocatalytic hydrogen evelution reaction catalyst

More Information
  • Received Date: August 11, 2021
  • Available Online: November 07, 2022
  • With the increasing global energy shortage and environmental pollution problems, hydrogen energy, with the advantages of high calorific value and environmental friendliness, has become one of the most promising energy sources. As a green and sustainable hydrogen production method, the electrocatalytic hydrogen evolution reaction (HER) has attracted wide attention. At present, catalysts are always the core issue in both the basic research and applied research of HER. Single atom catalysts (SACs) show excellent catalytic activity and stability in the HER process due to their maximum atomic utilization efficiency and unique structure and performance. In this paper, the synthesis methods of SACs used in HER in recent years, including preparation methods such as pyrolysis, deposition, liquid phase synthesis and etching were reviewed. In addition, various physical chemical performance characterization and density functional calculation methods used to explore the structure-catalytic relationship between SACs and HER were summarized. Finally, the deficiencies of SACs for HER were analyzed and summarized to provide a valuable theoretical reference for the design and preparation of cheap and effective SACs for HER and improve their practical application value.
  • [1]
    SUBBARAMAN R, TRIPKOVIC D, STRMCNIK D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260. doi: 10.1126/science.1211934
    [2]
    CHENG N C, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7(1): 13638. doi: 10.1038/ncomms13638
    [3]
    SARKAR S, PETER S C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2018, 5(9): 2060-2080. doi: 10.1039/C8QI00042E
    [4]
    YING Y R, LUO X, QIAO J L, et al. "More is different: " synergistic effect and structural engineering in double-atom catalysts[J]. Advanced Functional Materials, 2020, 31(3): 2007423.
    [5]
    钟海, 张倬, 佘雪峰, 等. 稀土铈在电催化水分解中的应用研究进展[J]. 有色金属科学与工程, 2020, 11(5): 95-105. doi: 10.13264/j.cnki.ysjskx.2020.05.014
    [6]
    熊昆, 高媛, 周桂林. 电解水析氢非铂催化剂的设计与发展[J]. 中国有色金属学报, 2017, 27(6): 1289-1301. doi: 10.19476/j.ysxb.1004.0609.2017.06.024
    [7]
    QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641. doi: 10.1038/nchem.1095
    [8]
    LIU L, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079. doi: 10.1021/acs.chemrev.7b00776
    [9]
    LIANG S X, HAO C, SHI Y T, The power of single-atom catalysis[J]. Chem Cat Chem, 2015, 7(17): 2559-2567.
    [10]
    CHEN Y J, JI S F, CHEN C, et al. Singleatom catalysts: synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264. doi: 10.1016/j.joule.2018.06.019
    [11]
    YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. doi: 10.1021/ar300361m
    [12]
    张春梅, 胡茂从, 严婷轩, 等. 单原子催化剂制备方法及其应用[J]. 山东化工, 2021, 50(13): 68-69. doi: 10.3969/j.issn.1008-021X.2021.13.029
    [13]
    LIN J, WANG A Q, QIAO B T, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. Journal of the American Chemical Society, 2013, 135(41): 15314-15317. doi: 10.1021/ja408574m
    [14]
    王成雄, 冯丰, 潘再富, 等. 铂族金属单原子催化剂的制备、表征技术研究进展[J]. 贵金属, 2019, 40(1): 88-97. doi: 10.3969/j.issn.1004-0676.2019.01.016
    [15]
    WANG X X, DAVID A, PAN Y T. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Advanced Materials, 2018, 30(11): 1706758. doi: 10.1002/adma.201706758
    [16]
    周燕强, 陈萌, 徐立军, 等. Pt/MoC的制备及其在电解水析氢反应中的催化性能[J]. 精细化工, 2018, 35(11): 1921-1927. doi: 10.13550/j.jxhg.20180103
    [17]
    JIN S, NI Y X, HAO Z M, et al. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(49): 21885-21889. doi: 10.1002/anie.202008422
    [18]
    LI M F, DUANMU K N, WAN C Z, et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nature Catalysis, 2019, 2(6): 495-503. doi: 10.1038/s41929-019-0279-6
    [19]
    ZHANG H B, AN P F, ZHOU W, et al. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction[J]. Science Advances, 2018, 4(1): eaao6657. doi: 10.1126/sciadv.aao6657
    [20]
    刘敏敏, 张鑫全, 陈春华, 等. 金属有机框架衍生的单原子分散金属催化剂[J]. 自然杂志, 2020, 42(1): 51-58. doi: 10.3969/j.issn.0253-9608.2020.01.006
    [21]
    HOWARTH A J, LIU Y Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3): 15018. doi: 10.1038/natrevmats.2015.18
    [22]
    贾静雯, 张梦凡, 张振民, 等. 过渡金属有机框架结构构件及电解水研究进展[J]. 有色金属科学与工程, 2021, 12(1): 49-66. doi: 10.13264/j.cnki.ysjskx.2021.01.008
    [23]
    CHEN W X, PEI J J, HE C T, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution[J]. Advanced Materials, 2018, 30(30): e1800396. doi: 10.1002/adma.201800396
    [24]
    SU J W, GE R X, DONG Y, et al. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion[J]. Journal of Materials Chemistry A, 2018, 6(29): 14025-14042. doi: 10.1039/C8TA04064H
    [25]
    QU Y T, LI Z J, CHEN W X, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nature Catalysis, 2018, 1(10): 781-786. doi: 10.1038/s41929-018-0146-x
    [26]
    YANG J, QIU Z Y, ZHAO C M, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts[J]. Angewandte Chemie International Edition, 2018, 57(43): 14095-14100. doi: 10.1002/anie.201808049
    [27]
    JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154. doi: 10.1126/science.aaf8800
    [28]
    WEI S J, LI A, LIU J C, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nature Nanotechnology, 2018, 13(9): 856-861. doi: 10.1038/s41565-018-0197-9
    [29]
    QU Y T, CHEN B X, LI Z J, et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal[J]. Journal of the American Chemical Society, 2019, 141(11): 4505-4509. doi: 10.1021/jacs.8b09834
    [30]
    SHEN Y, LUA A C, Xi J Y, et al. Ternary platinum-copper-nickel nanoparticles anchored to hierarchical carbon supports as free-standing hydrogen evolution electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3464-3472.
    [31]
    QIU H J, ITO Y, CONG W T, et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production[J]. Angewandte Chemie (International ed. in English), 2015, 54(47): 14031-14035. doi: 10.1002/anie.201507381
    [32]
    HAN A L, ZHOU X F, WANG X J, et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis[J]. Nature Communications, 2021, 12(1): 709. doi: 10.1038/s41467-021-20951-9
    [33]
    杨慧敏, 陈耀, 覃勇. 原子层沉积方法在设计制备高效电催化剂中的应用[J]. 催化学报, 2020, 41(2): 227-241. https://www.cnki.com.cn/Article/CJFDTOTAL-CHUA202002001.htm
    [34]
    SUN S H, ZHANG G X, GAUQUELIN N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3(1): 1775. doi: 10.1038/srep01775
    [35]
    CHENG N C, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7(1): 13638. doi: 10.1038/ncomms13638
    [36]
    FANG S, ZHU X R, LIU X K, et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction[J]. Nature Communications, 2020, 11(1): 1029. doi: 10.1038/s41467-020-14848-2
    [37]
    ZHANG L, WANG Q, SI R T, et al. New insight of pyrrole-Like nitrogen for boosting hydrogen evolution activity and stability of Pt single atoms[J]. Small, 2021, 17(16): 2004453. doi: 10.1002/smll.202004453
    [38]
    JEONG S J, GU Y, HEO J, et al. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors[J]. Scientific Reports, 2016, 6(1): 20907. doi: 10.1038/srep20907
    [39]
    LESKELA M, RITALA M. Atomic layer deposition chemistry: recent developments and future challenges[J]. Angewandte Chemie, 2003, 42(45): 5548-5554. doi: 10.1002/anie.200301652
    [40]
    KIM H, VAC J. Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing[J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 2003, 21(6): 2231-2261.
    [41]
    杨慧权, 杨帆, 尉明洋, 等. Pt原子团簇在微纳碳电极上的电沉积研究[J]. 化学通报, 2021, 84(2): 172-177. doi: 10.14159/j.cnki.0441-3776.2021.02.010
    [42]
    DONG G F, FANG M, WANG H T, et al. Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(24): 13080-13086. doi: 10.1039/C5TA02551F
    [43]
    TAVAKKOLI M, HOLMBERG N, KRONBERG R, et al. Electrochemical activation of single-walled carbon nanotubes with pseudoatomic-scale platinum for the hydrogen evolution reaction[J]. ACS Catalysis, 2017, 7(5): 3121-3130. doi: 10.1021/acscatal.7b00199
    [44]
    XUE Y R, HUANG B L, YI Y P, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature Communications, 2018, 9(1): 1460. doi: 10.1038/s41467-018-03896-4
    [45]
    ZHANG Z R, FENG C, LIU C X, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts[J]. Nature Communications, 2020, 11(1): 1215. doi: 10.1038/s41467-020-14917-6
    [46]
    ZHANG L H, HAN L L, LIU H X, et al. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media[J]. Angewandte Chemie, 2017, 56(44): 13694-13698. doi: 10.1002/anie.201706921
    [47]
    ZHANG J, SASAKⅡ K, SUTTER E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809): 220-222. doi: 10.1126/science.1134569
    [48]
    SHI Y, HUANG W M, LI J, et al. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts[J]. Nature Communications, 2020, 11(1): 4558. doi: 10.1038/s41467-020-18430-8
    [49]
    黄可迪, 冯艳, 马如龙, 等. Co和P对Ni-金刚石复合电沉积机理的影响[J]. 有色金属科学与工程, 2017, 8(6): 43-50. doi: 10.13264/j.cnki.ysjskx.2017.06.007
    [50]
    SU J W, GE R X, DONG Y, et al. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion[J]. Journal of Materials Chemistry A, 2018, 6(29): 14025-14042. doi: 10.1039/C8TA04064H
    [51]
    LI Y G, WANG H L, XIE L M, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19): 7296-7299. doi: 10.1021/ja201269b
    [52]
    卢立新, 王新东. 石墨烯负载铂催化剂的制备及稳定性[J]. 有色金属科学与工程, 2015, 6(3): 40-44. doi: 10.13264/j.cnki.ysjskx.2015.03.008
    [53]
    ZHANG J, WU X, CHEONG W C, et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes[J]. Nature Communications, 2018, 9(1): 1002. doi: 10.1038/s41467-018-03380-z
    [54]
    于博, 李研, 刘辉, 等. NiCoP合金纳米棒阵列制备及电催化析氢性能研究[J]. 人工晶体学报, 2020, 49(2): 270-275. doi: 10.3969/j.issn.1000-985X.2020.02.015
    [55]
    CHENG X, LU Y, ZHENG L R, et al. Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction[J]. Materials Today Energy, 2021, 20(5): 100653.
    [56]
    WANG D L, LI H P, DU N, et al. Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction[J]. Advanced Functional Materials, 2021, 31(23): 2009770. doi: 10.1002/adfm.202009770
    [57]
    GHOSH T K, NAIR N N. Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: mechanism, efects of hydration, oxidation state, and cluster size[J]. Chem Cat Chem, 2013, 5(7): 1811-1821.
    [58]
    SPEZZATI G, SU Y Q, HOFMANN J P, et al. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation[J]. ACS Catalysis, 2017, 7(10): 6887-6891. doi: 10.1021/acscatal.7b02001
    [59]
    WAN J W, CHEN W X, JIA C Y, et al. Defect efects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties[J]. Advanced Materials, 2018, 30(11): 1705369. doi: 10.1002/adma.201705369
    [60]
    杭梦婷, 成杨, 宋晓晴, 等. 石墨相氮化碳(g-C3N4)的制备及其在单原子电催化中的应用研究进展[J]. 化学世界, 2019, 60(4): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSS201904001.htm
    [61]
    HAN B, LANG R, QIAO B T, et al. Highlights of the major progress in single-atom catalysis in 2015 and 2016[J]. Chinese Journal of Catalysis, 2017, 38(9): 1498-1507. doi: 10.1016/S1872-2067(17)62872-9
    [62]
    ZHAO D, CHEN Z, YANG W J, et al. MXene (Ti3C2) vacancy-confned single-atom catalyst for efcient functionalization of CO2[J]. Journal of the American Chemical Society, 2019, 141(8): 4086-4093.
    [63]
    ZHANG J Q, ZHAO Y F, GUO X, et al. Single platinum atoms immobilized on an MXene as an efcient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 2018, 1(12): 985-992.
    [64]
    王家佩, 江松, 丛野, 等. 基于MXenes材料的电催化析氢研究进展[J]. 硅酸盐通报, 2020, 39(12): 4022-4033. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202012042.htm
    [65]
    QI K, CUI X Q, GU L, et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis[J]. Nature Communications, 2019, 10(1): 5231.
    [66]
    李晓坤, 张友林, 王晓文, 等. 金催化-还原策略制备单原子层铂的Au@Pt核壳结构及电催化应用[J]. 中国科学(化学), 2017, 47(5): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201705017.htm
    [67]
    杨守宁, 万佳, 邓宝娟, 等. 单原子催化剂的制备与表征[J]. 化学试剂, 2019, 41(12): 1254-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201912007.htm
    [68]
    LIU J Y. Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: Probing the catalytically active centers[J]. Chinese Journal of Catalysis, 2017, 38(9): 1460-1472.
    [69]
    TIAO H, TIAN H J, WANG S J, et al. High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode[J]. Nature Communications, 2020, 11(1): 5025.
    [70]
    周君慧, 敖志敏, 安太成. 基于密度泛函理论下H2S在单原子催化剂V/Ti2CO2上的分解机理研究[J]. 物理化学学报, 2021, 37(8): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX202108012.htm
    [71]
    LI J J, JIANG Y F, WANG Q, et al. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms[J]. Nature Communications, 2021, 12(1): 6806.
    [72]
    ULLAH F, AYUB K, MAHMOOD T. High performance SACs for HER process using late first-row transition metals anchored on graphyne support: A DFT insight[J]. International Journal of Hydrogen Energy, 2021, 46(76): 37814-37823.
  • Related Articles

    [1]FENG Qiang, LI Jian. Advances in electrocatalytic CO2 reduction with copper-based catalysts[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 364-382. DOI: 10.13264/j.cnki.ysjskx.2024.03.007
    [2]DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001
    [3]CAO Caifang, PANG Zhensheng, YUAN Zhuangzhuang, WANG Ruixiang, NIE Huaping, LI Laichao. Study on the decomposition of spent SCR catalyst by Na2CO3-NaCl mixed roasting method[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 63-69. DOI: 10.13264/j.cnki.ysjskx.2021.03.008
    [4]YU Boyuan, ZHANG Jialiang, YANG Cheng, WANG Lihua, CHEN Yongqiang, WANG Chengyan. Research advances on valuable metals recovery from spent hydrogenation catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 16-24, 51. DOI: 10.13264/j.cnki.ysjskx.2020.05.003
    [5]YE Shewen, PENG Wenkun, PENG Ziyang, OU Ziran, GUO Ziting, ZENG Qinqin, YANG Hui. Nitrogen-doped carbon-supported ultrafine molybdenum carbide hydrogen evolution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 33-38. DOI: 10.13264/j.cnki.ysjskx.2020.03.004
    [6]DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008
    [7]LU Lixin, WANG Xindong. Preparation and stability of patinum-loaded graphene catalyst[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.03.008
    [8]HU Jiu-biao, YU Chang-lin, ZHOU Xiao-chun. Research progress of carbon deposition on catalysts during the partial oxidation of methane[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 5-11.
    [9]YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48.
    [10]LIN He-cheng. A study on preparing cobalt oxide from cobal-t catalyst waste[J]. Nonferrous Metals Science and Engineering, 2000, 14(3): 20-22.

Catalog

    Article Metrics

    Article views (472) PDF downloads (57) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return