Citation: | WANG Buxiang, SHU Qing. Research progress in single-atomic electrocatalytic hydrogen evelution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 92-100. DOI: 10.13264/j.cnki.ysjskx.2022.05.011 |
[1] |
SUBBARAMAN R, TRIPKOVIC D, STRMCNIK D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260. doi: 10.1126/science.1211934
|
[2] |
CHENG N C, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7(1): 13638. doi: 10.1038/ncomms13638
|
[3] |
SARKAR S, PETER S C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2018, 5(9): 2060-2080. doi: 10.1039/C8QI00042E
|
[4] |
YING Y R, LUO X, QIAO J L, et al. "More is different: " synergistic effect and structural engineering in double-atom catalysts[J]. Advanced Functional Materials, 2020, 31(3): 2007423.
|
[5] |
钟海, 张倬, 佘雪峰, 等. 稀土铈在电催化水分解中的应用研究进展[J]. 有色金属科学与工程, 2020, 11(5): 95-105. doi: 10.13264/j.cnki.ysjskx.2020.05.014
|
[6] |
熊昆, 高媛, 周桂林. 电解水析氢非铂催化剂的设计与发展[J]. 中国有色金属学报, 2017, 27(6): 1289-1301. doi: 10.19476/j.ysxb.1004.0609.2017.06.024
|
[7] |
QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641. doi: 10.1038/nchem.1095
|
[8] |
LIU L, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079. doi: 10.1021/acs.chemrev.7b00776
|
[9] |
LIANG S X, HAO C, SHI Y T, The power of single-atom catalysis[J]. Chem Cat Chem, 2015, 7(17): 2559-2567.
|
[10] |
CHEN Y J, JI S F, CHEN C, et al. Singleatom catalysts: synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264. doi: 10.1016/j.joule.2018.06.019
|
[11] |
YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. doi: 10.1021/ar300361m
|
[12] |
张春梅, 胡茂从, 严婷轩, 等. 单原子催化剂制备方法及其应用[J]. 山东化工, 2021, 50(13): 68-69. doi: 10.3969/j.issn.1008-021X.2021.13.029
|
[13] |
LIN J, WANG A Q, QIAO B T, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. Journal of the American Chemical Society, 2013, 135(41): 15314-15317. doi: 10.1021/ja408574m
|
[14] |
王成雄, 冯丰, 潘再富, 等. 铂族金属单原子催化剂的制备、表征技术研究进展[J]. 贵金属, 2019, 40(1): 88-97. doi: 10.3969/j.issn.1004-0676.2019.01.016
|
[15] |
WANG X X, DAVID A, PAN Y T. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Advanced Materials, 2018, 30(11): 1706758. doi: 10.1002/adma.201706758
|
[16] |
周燕强, 陈萌, 徐立军, 等. Pt/MoC的制备及其在电解水析氢反应中的催化性能[J]. 精细化工, 2018, 35(11): 1921-1927. doi: 10.13550/j.jxhg.20180103
|
[17] |
JIN S, NI Y X, HAO Z M, et al. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(49): 21885-21889. doi: 10.1002/anie.202008422
|
[18] |
LI M F, DUANMU K N, WAN C Z, et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis[J]. Nature Catalysis, 2019, 2(6): 495-503. doi: 10.1038/s41929-019-0279-6
|
[19] |
ZHANG H B, AN P F, ZHOU W, et al. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction[J]. Science Advances, 2018, 4(1): eaao6657. doi: 10.1126/sciadv.aao6657
|
[20] |
刘敏敏, 张鑫全, 陈春华, 等. 金属有机框架衍生的单原子分散金属催化剂[J]. 自然杂志, 2020, 42(1): 51-58. doi: 10.3969/j.issn.0253-9608.2020.01.006
|
[21] |
HOWARTH A J, LIU Y Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3): 15018. doi: 10.1038/natrevmats.2015.18
|
[22] |
贾静雯, 张梦凡, 张振民, 等. 过渡金属有机框架结构构件及电解水研究进展[J]. 有色金属科学与工程, 2021, 12(1): 49-66. doi: 10.13264/j.cnki.ysjskx.2021.01.008
|
[23] |
CHEN W X, PEI J J, HE C T, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution[J]. Advanced Materials, 2018, 30(30): e1800396. doi: 10.1002/adma.201800396
|
[24] |
SU J W, GE R X, DONG Y, et al. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion[J]. Journal of Materials Chemistry A, 2018, 6(29): 14025-14042. doi: 10.1039/C8TA04064H
|
[25] |
QU Y T, LI Z J, CHEN W X, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nature Catalysis, 2018, 1(10): 781-786. doi: 10.1038/s41929-018-0146-x
|
[26] |
YANG J, QIU Z Y, ZHAO C M, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts[J]. Angewandte Chemie International Edition, 2018, 57(43): 14095-14100. doi: 10.1002/anie.201808049
|
[27] |
JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154. doi: 10.1126/science.aaf8800
|
[28] |
WEI S J, LI A, LIU J C, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nature Nanotechnology, 2018, 13(9): 856-861. doi: 10.1038/s41565-018-0197-9
|
[29] |
QU Y T, CHEN B X, LI Z J, et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal[J]. Journal of the American Chemical Society, 2019, 141(11): 4505-4509. doi: 10.1021/jacs.8b09834
|
[30] |
SHEN Y, LUA A C, Xi J Y, et al. Ternary platinum-copper-nickel nanoparticles anchored to hierarchical carbon supports as free-standing hydrogen evolution electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3464-3472.
|
[31] |
QIU H J, ITO Y, CONG W T, et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production[J]. Angewandte Chemie (International ed. in English), 2015, 54(47): 14031-14035. doi: 10.1002/anie.201507381
|
[32] |
HAN A L, ZHOU X F, WANG X J, et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis[J]. Nature Communications, 2021, 12(1): 709. doi: 10.1038/s41467-021-20951-9
|
[33] |
杨慧敏, 陈耀, 覃勇. 原子层沉积方法在设计制备高效电催化剂中的应用[J]. 催化学报, 2020, 41(2): 227-241. https://www.cnki.com.cn/Article/CJFDTOTAL-CHUA202002001.htm
|
[34] |
SUN S H, ZHANG G X, GAUQUELIN N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3(1): 1775. doi: 10.1038/srep01775
|
[35] |
CHENG N C, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7(1): 13638. doi: 10.1038/ncomms13638
|
[36] |
FANG S, ZHU X R, LIU X K, et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction[J]. Nature Communications, 2020, 11(1): 1029. doi: 10.1038/s41467-020-14848-2
|
[37] |
ZHANG L, WANG Q, SI R T, et al. New insight of pyrrole-Like nitrogen for boosting hydrogen evolution activity and stability of Pt single atoms[J]. Small, 2021, 17(16): 2004453. doi: 10.1002/smll.202004453
|
[38] |
JEONG S J, GU Y, HEO J, et al. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors[J]. Scientific Reports, 2016, 6(1): 20907. doi: 10.1038/srep20907
|
[39] |
LESKELA M, RITALA M. Atomic layer deposition chemistry: recent developments and future challenges[J]. Angewandte Chemie, 2003, 42(45): 5548-5554. doi: 10.1002/anie.200301652
|
[40] |
KIM H, VAC J. Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing[J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 2003, 21(6): 2231-2261.
|
[41] |
杨慧权, 杨帆, 尉明洋, 等. Pt原子团簇在微纳碳电极上的电沉积研究[J]. 化学通报, 2021, 84(2): 172-177. doi: 10.14159/j.cnki.0441-3776.2021.02.010
|
[42] |
DONG G F, FANG M, WANG H T, et al. Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(24): 13080-13086. doi: 10.1039/C5TA02551F
|
[43] |
TAVAKKOLI M, HOLMBERG N, KRONBERG R, et al. Electrochemical activation of single-walled carbon nanotubes with pseudoatomic-scale platinum for the hydrogen evolution reaction[J]. ACS Catalysis, 2017, 7(5): 3121-3130. doi: 10.1021/acscatal.7b00199
|
[44] |
XUE Y R, HUANG B L, YI Y P, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature Communications, 2018, 9(1): 1460. doi: 10.1038/s41467-018-03896-4
|
[45] |
ZHANG Z R, FENG C, LIU C X, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts[J]. Nature Communications, 2020, 11(1): 1215. doi: 10.1038/s41467-020-14917-6
|
[46] |
ZHANG L H, HAN L L, LIU H X, et al. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media[J]. Angewandte Chemie, 2017, 56(44): 13694-13698. doi: 10.1002/anie.201706921
|
[47] |
ZHANG J, SASAKⅡ K, SUTTER E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809): 220-222. doi: 10.1126/science.1134569
|
[48] |
SHI Y, HUANG W M, LI J, et al. Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts[J]. Nature Communications, 2020, 11(1): 4558. doi: 10.1038/s41467-020-18430-8
|
[49] |
黄可迪, 冯艳, 马如龙, 等. Co和P对Ni-金刚石复合电沉积机理的影响[J]. 有色金属科学与工程, 2017, 8(6): 43-50. doi: 10.13264/j.cnki.ysjskx.2017.06.007
|
[50] |
SU J W, GE R X, DONG Y, et al. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion[J]. Journal of Materials Chemistry A, 2018, 6(29): 14025-14042. doi: 10.1039/C8TA04064H
|
[51] |
LI Y G, WANG H L, XIE L M, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19): 7296-7299. doi: 10.1021/ja201269b
|
[52] |
卢立新, 王新东. 石墨烯负载铂催化剂的制备及稳定性[J]. 有色金属科学与工程, 2015, 6(3): 40-44. doi: 10.13264/j.cnki.ysjskx.2015.03.008
|
[53] |
ZHANG J, WU X, CHEONG W C, et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes[J]. Nature Communications, 2018, 9(1): 1002. doi: 10.1038/s41467-018-03380-z
|
[54] |
于博, 李研, 刘辉, 等. NiCoP合金纳米棒阵列制备及电催化析氢性能研究[J]. 人工晶体学报, 2020, 49(2): 270-275. doi: 10.3969/j.issn.1000-985X.2020.02.015
|
[55] |
CHENG X, LU Y, ZHENG L R, et al. Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction[J]. Materials Today Energy, 2021, 20(5): 100653.
|
[56] |
WANG D L, LI H P, DU N, et al. Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction[J]. Advanced Functional Materials, 2021, 31(23): 2009770. doi: 10.1002/adfm.202009770
|
[57] |
GHOSH T K, NAIR N N. Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: mechanism, efects of hydration, oxidation state, and cluster size[J]. Chem Cat Chem, 2013, 5(7): 1811-1821.
|
[58] |
SPEZZATI G, SU Y Q, HOFMANN J P, et al. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation[J]. ACS Catalysis, 2017, 7(10): 6887-6891. doi: 10.1021/acscatal.7b02001
|
[59] |
WAN J W, CHEN W X, JIA C Y, et al. Defect efects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties[J]. Advanced Materials, 2018, 30(11): 1705369. doi: 10.1002/adma.201705369
|
[60] |
杭梦婷, 成杨, 宋晓晴, 等. 石墨相氮化碳(g-C3N4)的制备及其在单原子电催化中的应用研究进展[J]. 化学世界, 2019, 60(4): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSS201904001.htm
|
[61] |
HAN B, LANG R, QIAO B T, et al. Highlights of the major progress in single-atom catalysis in 2015 and 2016[J]. Chinese Journal of Catalysis, 2017, 38(9): 1498-1507. doi: 10.1016/S1872-2067(17)62872-9
|
[62] |
ZHAO D, CHEN Z, YANG W J, et al. MXene (Ti3C2) vacancy-confned single-atom catalyst for efcient functionalization of CO2[J]. Journal of the American Chemical Society, 2019, 141(8): 4086-4093.
|
[63] |
ZHANG J Q, ZHAO Y F, GUO X, et al. Single platinum atoms immobilized on an MXene as an efcient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 2018, 1(12): 985-992.
|
[64] |
王家佩, 江松, 丛野, 等. 基于MXenes材料的电催化析氢研究进展[J]. 硅酸盐通报, 2020, 39(12): 4022-4033. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202012042.htm
|
[65] |
QI K, CUI X Q, GU L, et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis[J]. Nature Communications, 2019, 10(1): 5231.
|
[66] |
李晓坤, 张友林, 王晓文, 等. 金催化-还原策略制备单原子层铂的Au@Pt核壳结构及电催化应用[J]. 中国科学(化学), 2017, 47(5): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201705017.htm
|
[67] |
杨守宁, 万佳, 邓宝娟, 等. 单原子催化剂的制备与表征[J]. 化学试剂, 2019, 41(12): 1254-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201912007.htm
|
[68] |
LIU J Y. Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: Probing the catalytically active centers[J]. Chinese Journal of Catalysis, 2017, 38(9): 1460-1472.
|
[69] |
TIAO H, TIAN H J, WANG S J, et al. High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode[J]. Nature Communications, 2020, 11(1): 5025.
|
[70] |
周君慧, 敖志敏, 安太成. 基于密度泛函理论下H2S在单原子催化剂V/Ti2CO2上的分解机理研究[J]. 物理化学学报, 2021, 37(8): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX202108012.htm
|
[71] |
LI J J, JIANG Y F, WANG Q, et al. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms[J]. Nature Communications, 2021, 12(1): 6806.
|
[72] |
ULLAH F, AYUB K, MAHMOOD T. High performance SACs for HER process using late first-row transition metals anchored on graphyne support: A DFT insight[J]. International Journal of Hydrogen Energy, 2021, 46(76): 37814-37823.
|
[1] | FENG Qiang, LI Jian. Advances in electrocatalytic CO2 reduction with copper-based catalysts[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 364-382. DOI: 10.13264/j.cnki.ysjskx.2024.03.007 |
[2] | DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001 |
[3] | CAO Caifang, PANG Zhensheng, YUAN Zhuangzhuang, WANG Ruixiang, NIE Huaping, LI Laichao. Study on the decomposition of spent SCR catalyst by Na2CO3-NaCl mixed roasting method[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 63-69. DOI: 10.13264/j.cnki.ysjskx.2021.03.008 |
[4] | YU Boyuan, ZHANG Jialiang, YANG Cheng, WANG Lihua, CHEN Yongqiang, WANG Chengyan. Research advances on valuable metals recovery from spent hydrogenation catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 16-24, 51. DOI: 10.13264/j.cnki.ysjskx.2020.05.003 |
[5] | YE Shewen, PENG Wenkun, PENG Ziyang, OU Ziran, GUO Ziting, ZENG Qinqin, YANG Hui. Nitrogen-doped carbon-supported ultrafine molybdenum carbide hydrogen evolution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 33-38. DOI: 10.13264/j.cnki.ysjskx.2020.03.004 |
[6] | DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008 |
[7] | LU Lixin, WANG Xindong. Preparation and stability of patinum-loaded graphene catalyst[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.03.008 |
[8] | HU Jiu-biao, YU Chang-lin, ZHOU Xiao-chun. Research progress of carbon deposition on catalysts during the partial oxidation of methane[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 5-11. |
[9] | YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48. |
[10] | LIN He-cheng. A study on preparing cobalt oxide from cobal-t catalyst waste[J]. Nonferrous Metals Science and Engineering, 2000, 14(3): 20-22. |