Citation: | HUANG Haohui, SUN Haipeng, FAN Qizhe, YU Changlin, JI Hongbing. Research progress in fabrication and application of S-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 68-79. DOI: 10.13264/j.cnki.ysjskx.2022.05.009 |
[1] |
BAHRUDIN N N, NAWI M A. Immobilized titanium dioxide/powdered activated carbon system for the photocatalytic adsorptive removal of phenol[J]. Korean Journal of Chemical Engineering, 2018, 35(7): 1532-1541. doi: 10.1007/s11814-018-0062-4
|
[2] |
CHEN X, ZHANG J, ZENG J, et al. Novel 3D/2D heterojunction photocatalysts constructed by three-dimensional In2S3 dandelions and ultrathin hexagonal SnS2 nanosheets with excellent photocatalytic and photoelectrochemical activities[J]. Applied Surface Science, 2019, 463: 693-703. doi: 10.1016/j.apsusc.2018.09.013
|
[3] |
YANG J, ZHU X, MO Z, et al. A multidimensional In2S3-CuInS2 heterostructure for photocatalytic carbon dioxide reduction[J]. Inorganic Chemistry Frontiers, 2018, 5(12): 3163-3169. doi: 10.1039/C8QI00924D
|
[4] |
YUAN X, JIANG L, LIANG J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chemical Engineering Journal, 2019, 356: 371-381. doi: 10.1016/j.cej.2018.09.079
|
[5] |
XIAO T, TANG Z, YANG Y, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2018, 220: 417-428. doi: 10.1016/j.apcatb.2017.08.070
|
[6] |
JIANG R, WU D, LU G, et al. Modified 2D-2D ZnIn2S4/BiOCl van der Waals heterojunctions with CQDs: accelerated charge transfer and enhanced photocatalytic activity under vis-and NIR-light[J]. Chemosphere, 2019, 227: 82-92. doi: 10.1016/j.chemosphere.2019.04.038
|
[7] |
ZHAO S, HU F, LI J. Hierarchical core-shell Al2O3@ Pd-CoAlO microspheres for low-temperature toluene combustion[J]. Acs Catalysis, 2016, 6(6): 3433-3441. doi: 10.1021/acscatal.6b00144
|
[8] |
娄向东, 魏崇, 李炳鑫, 等. C@ ZnFe2O4/Ag3PO4复合材料的可见光催化性能研究[J]. 河南师范大学学报(自然科学版), 2019, 47(5): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX201905013.htm
|
[9] |
王颖, 杨传玺, 王小宁, 等. 二维光催化材料研究进展[J]. 有色金属科学与工程, 2021, 12(2): 30-42. doi: 10.13264/j.cnki.ysjskx.2021.02.005
|
[10] |
ZHAO Y, LIANG X, SHI H, et al. Photocatalytic activity enhanced by synergistic effects of nano-silver and ZnSe quantum dots co-loaded with bulk g-C3N4 for Ceftriaxone sodium degradation in aquatic environment[J]. Chemical Engineering Journal, 2018, 353: 56-68. doi: 10.1016/j.cej.2018.07.109
|
[11] |
XU Y, GE F, CHEN Z, et al. One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance[J]. Applied Surface Science, 2019, 469: 739-746. doi: 10.1016/j.apsusc.2018.11.062
|
[12] |
XU Y, LIU J, XIE M, et al. Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation[J]. Chemical Engineering Journal, 2019, 357: 487-497. doi: 10.1016/j.cej.2018.09.098
|
[13] |
SHARMA G, KUMAR A, NAUSHAD M, et al. Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites[J]. Journal of Cleaner Production, 2018, 172: 2919-2930. doi: 10.1016/j.jclepro.2017.11.122
|
[14] |
YE Z, LI J, ZHOU M, et al. Well-dispersed nebula-like ZnO/CeO2@ HNTs heterostructure for efficient photocatalytic degradation of tetracycline[J]. Chemical Engineering Journal, 2016, 304: 917-933. doi: 10.1016/j.cej.2016.07.014
|
[15] |
LI X, CHEN D, LI N, et al. AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for water remediation[J]. Applied Catalysis B: Environmental, 2018, 229: 155-162. doi: 10.1016/j.apcatb.2018.02.028
|
[16] |
WANG S, GUAN B Y, LU Y, et al. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(48): 17305-17308. doi: 10.1021/jacs.7b10733
|
[17] |
XU F, ZHU B, CHENG B, et al. 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction[J]. Advanced Optical Materials, 2018, 6(23): 1800911. doi: 10.1002/adom.201800911
|
[18] |
LOW J, DAI B, TONG T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J]. Advanced Materials, 2019, 31(6): 1802981. doi: 10.1002/adma.201802981
|
[19] |
MIYAUCHI M, IRIE H, LIU M, et al. Visible-light-sensitive photocatalysts: nanocluster-grafted titanium dioxide for indoor environmental remediation[J]. Journal of Physical Chemistry Letters, 2016, 7(1): 75-84. doi: 10.1021/acs.jpclett.5b02041
|
[20] |
刘山虎, 许庆峰, 邢瑞敏, 等. 二氧化钛光催化技术应用于室内甲醛降解的研究进展[J]. 化学研究, 2016, 27(4): 502-513. doi: 10.14002/j.hxya.2016.04.020
|
[21] |
ZHU X, CHANG D L, LI X S, et al. Inherent rate constants and humidity impact factors of anatase TiO2 film in photocatalytic removal of formaldehyde from air[J]. Chemical Engineering Journal, 2015, 279: 897-903. doi: 10.1016/j.cej.2015.05.095
|
[22] |
MAMAGHANI A H, HAGHIGHAT F, LEE C S. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art[J]. Applied Catalysis B: Environmental, 2017, 203: 247-269. doi: 10.1016/j.apcatb.2016.10.037
|
[23] |
PETER I J, VIGNESH G, VIJAYA S, et al. Enhancing the power conversion efficiency of SrTiO3/CdS/Bi2S3 quantum dot based solar cell using phosphor[J]. Applied Surface Science, 2019, 494: 551-560. doi: 10.1016/j.apsusc.2019.07.092
|
[24] |
HU B, CAI F, CHEN T, et al. Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18247-18256.
|
[25] |
LIU S, XIA J, YU J. Amine-functionalized titanate nanosheet-assembled yolk@ shell microspheres for efficient cocatalyst-free visible-light photocatalytic CO2 reduction[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8166-8175.
|
[26] |
LIU X, YE M, ZHANG S, et al. Enhanced photocatalytic CO2 valorization over TiO2 hollow microspheres by synergetic surface tailoring and Au decoration[J]. Journal of Materials Chemistry A, 2018, 6(47): 24245-24255. doi: 10.1039/C8TA09661A
|
[27] |
WEON S, CHOI J, PARK T, et al. Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2017, 205: 386-392. doi: 10.1016/j.apcatb.2016.12.048
|
[28] |
FRIEDMANN D, HAKKI A, KIM H, et al. Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives[J]. Green Chemistry, 2016, 18(20): 5391-5411. doi: 10.1039/C6GC01582D
|
[29] |
SUN H, DONG B, SU G, et al. Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity[J]. Applied Surface Science, 2015, 343: 181-187. doi: 10.1016/j.apsusc.2015.02.148
|
[30] |
BAJOROWICZ B, KOWALSKA E, NADOLNA J, et al. Preparation of CdS and Bi2S3 quantum dots co-decorated perovskite-type KNbO3 ternary heterostructure with improved visible light photocatalytic activity and stability for phenol degradation[J]. Dalton Transactions, 2018, 47(42): 15232-15245. doi: 10.1039/C8DT03094D
|
[31] |
LIU W, ZHONG D, DAI Z, et al. Synergetic utilization of photoabsorption and surface facet in crystalline/amorphous contacted BiOCl-Bi2S3 composite for photocatalytic degradation[J]. Journal of Alloys and Compounds, 2019, 780: 907-916. doi: 10.1016/j.jallcom.2018.12.003
|
[32] |
SHI H, WANG C, ZHAO Y, et al. Highly efficient visible light driven photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8 composite[J]. Applied Catalysis B: Environmental, 2019, 254: 403-413. doi: 10.1016/j.apcatb.2019.05.020
|
[33] |
NAUSHAD M, SHARMA G, ALOTHMAN Z A. Photodegradation of toxic dye using Gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel[J]. Journal of Cleaner Production, 2019, 241: 118263. doi: 10.1016/j.jclepro.2019.118263
|
[34] |
LI F, LAN X, WANG L, et al. An efficient photocatalyst coating strategy for intimately coupled photocatalysis and biodegradation (ICPB): Powder spraying method[J]. Chemical Engineering Journal, 2020, 383: 123092. doi: 10.1016/j.cej.2019.123092
|
[35] |
丁志伟, 张鹏, 刘玉民. CdS QDs/Bi2MoO6异质结光催化剂的制备及光催化性能研究[J]. 河南师范大学学报(自然科学版), 2020, 48(4): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX202004010.htm
|
[36] |
HOU Y, LI X, ZHAO Q, et al. Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation[J]. Environmental Science & Technology, 2012, 46(7): 4042-4050.
|
[37] |
BAI S, ZHANG N, GAO C, et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018, 53: 296-336. doi: 10.1016/j.nanoen.2018.08.058
|
[38] |
QU Y, DUAN X. Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chemical Society Reviews, 2013, 42(7): 2568-2580. doi: 10.1039/C2CS35355E
|
[39] |
TERANISHI T, SAKAMOTO M. Charge separation in type-Ⅱ semiconductor heterodimers[J]. The Journal of Physical Chemistry Letters, 2013, 4(17): 2867-2873. doi: 10.1021/jz4013504
|
[40] |
魏龙福, 余长林, 陈建钗, 等. 水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J]. 有色金属科学与工程, 2014, 5(1): 47-47. doi: 10.13264/j.cnki.ysjskx.2014.01.009
|
[41] |
薛霜霜, 何洪波, 吴榛, 等. 研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J]. 有色金属科学与工程, 2017, 8(1): 86-88. doi: 10.13264/j.cnki.ysjskx.2017.01.015
|
[42] |
LOW J, JIANG C, CHENG B, et al. A review of direct Z-scheme photocatalysts[J]. Small Methods, 2017, 1(5): 1700080. doi: 10.1002/smtd.201700080
|
[43] |
KUMAR A, PRAJAPATI P K, PAL U, et al. Ternary rGO/InVO4/Fe2O3 Z-scheme heterostructured photocatalyst for CO2 reduction under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8201-8211.
|
[44] |
BHOSALE R, JAIN S, VINOD C P, et al. Direct Z-scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6174-6183.
|
[45] |
HE F, MENG A, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41(1): 9-20. doi: 10.1016/S1872-2067(19)63382-6
|
[46] |
黄海猛, 王常旺, 肖林昊. 非简并半导体中费米能级的简单计算及应用[J]. 大学物理, 2020, 39(1): 29-32. doi: 10.16854/j.cnki.1000-0712.190177
|
[47] |
XU C, LIU X, LI D, et al. Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20114-20124.
|
[48] |
LOW J, YU J, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. doi: 10.1002/adma.201601694
|
[49] |
SUN S. Recent advances in hybrid Cu2O-based heterogeneous nanostructures[J]. Nanoscale, 2015, 7(25): 10850-10882. doi: 10.1039/C5NR02178B
|
[50] |
XIAO J, XIE Y, CAO H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation[J]. Chemosphere, 2015, 121: 1-17. doi: 10.1016/j.chemosphere.2014.10.072
|
[51] |
曾德彬, 杨凯, 李笑笑, 等. Ag2CO3@AgBr复合光催化剂的制备、表征及其可见光催化性能[J]. 有色金属科学与工程, 2018, 9(1): 51-59. doi: 10.13264/j.cnki.ysjskx.2018.01.009
|
[52] |
LIU J J, CHENG B, YU J. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 31175-31183. doi: 10.1039/C6CP06147H
|
[53] |
ZENG D, YANG K, YU C, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 237: 449-463. doi: 10.1016/j.apcatb.2018.06.010
|
[54] |
ZHOU D, CHEN Z, YANG Q, et al. Facile Construction of g-C3N4 Nanosheets/TiO2 Nanotube Arrays as Z-Scheme Photocatalyst with Enhanced Visible-Light Performance[J]. ChemCatChem, 2016, 8(19): 3064-3073. doi: 10.1002/cctc.201600828
|
[55] |
SHAO B, LIU X, LIU Z, et al. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation[J]. Chemical Engineering Journal, 2019, 368: 730-745. doi: 10.1016/j.cej.2019.03.013
|
[56] |
XU Q, ZHANG L, CHENG B, et al. S-Scheme Heterojunction Photocatalyst[J]. Chem, 2020, 6 (7): 1543-1559. doi: 10.1016/j.chempr.2020.06.010
|
[57] |
樊谨菘, 陈静, 李江, 等. X射线辐照合成金纳米颗粒及其原位表征[J]. 辐射研究与辐射工艺学报, 2021, 39(4): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FYFG202104001.htm
|
[58] |
BARR T L. Modern ESCA: The principles and practice of X-ray photoelectron spectroscopy[M]. New York: CRC Press, 2020.
|
[59] |
王冰花, 陈金龙, 张彬. 原子力显微镜在高分子表征中的应用[J/OL]. 高分子学报: 1-15[2021-09-16].
|
[60] |
张薇, 侯矍, 李楠, 等. 基于原子力显微镜的单分子力谱技术在高分子表征中的应用[J/OL]. 高分子学报: 1-24[2021-09-16].
|
[61] |
NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117(17): 11302-11336. doi: 10.1021/acs.chemrev.7b00161
|
[62] |
DENG Y, ZHAO R. Advanced oxidation processes (AOPs) in wastewater treatment[J]. Current Pollution Reports, 2015, 1(3): 167-176. doi: 10.1007/s40726-015-0015-z
|
[63] |
HUANG C P, DONG C, TANG Z. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment[J]. Waste Management, 1993, 13(5-7): 361-377. doi: 10.1016/0956-053X(93)90070-D
|
[64] |
LIANG Y H, LIAO M W, MISHRA M, et al. Fabrication of Ta3N5/ZnO direct Z-scheme photocatalyst for hydrogen generation[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19162-19167. doi: 10.1016/j.ijhydene.2018.07.117
|
[65] |
WANG S, ZHU B, LIU M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Catalysis B: Environmental, 2019, 243: 19-26. doi: 10.1016/j.apcatb.2018.10.019
|
[66] |
XU F, ZHANG L, CHENG B, et al. Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12291-12298.
|
[67] |
王占国. 半导体材料研究的新进展[J]. 半导体技术, 2002, 8(3): 12-14. doi: 10.13290/j.cnki.bdtjs.2002.04.003
|
[68] |
孙朝宁, 贺光辉, 赵振博, 等. 半导体材料国内外标准研究进展[J]. 中国标准化, 2021(15): 132-135, 146. doi: 10.3969/j.issn.1002-5944.2021.15.017
|
[69] |
SCHRODER D K. Semiconductor material and device characterization[M]. Phoenix Lieb press, 2009.
|
[70] |
SCHNEIDER J J, HOFFMANN R C, ENGSTLER J, et al. A printed and flexible field-effect transistor device with nanoscale zinc oxide as active semiconductor material[J]. Advanced Materials, 2008, 20(18): 3383-3387. doi: 10.1002/adma.200800819
|
[71] |
XU Q, ZHANG L, YU J, et al. Direct Z-scheme photocatalysts: principles, synthesis, and applications[J]. Materials Today, 2018, 21(10): 1042-1063. doi: 10.1016/j.mattod.2018.04.008
|
[72] |
ZHANG J, XU Q, FENG Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte Chemie, 2008, 120(9): 1790-1793. doi: 10.1002/ange.200704788
|
[73] |
DONG H, ZHANG X, LI J, et al. Construction of morphology-controlled nonmetal 2D/3D homojunction towards enhancing photocatalytic activty and mechanism insight[J]. Applied Catalysis B: Environmental, 2020, 263: 118270. doi: 10.1016/j.apcatb.2019.118270
|
[74] |
温福宇, 杨金辉, 宗旭, 等. 太阳能光催化制氢研究进展[J]. 化学进展, 2009, 21(11): 2285-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200911005.htm
|
[75] |
WANG Q, HISATOMI T, JIA Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials, 2016, 15(6): 611. doi: 10.1038/nmat4589
|
[76] |
KUMAR S S, HIMABINDU V. Hydrogen production by PEM water electrolysis-A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. doi: 10.1016/j.mset.2019.03.002
|
[77] |
DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. doi: 10.1016/j.ijhydene.2019.12.059
|
[78] |
ZHANG S, FAN Q, XIA R, et al. CO2 reduction: from homogeneous to heterogeneous electrocatalysis[J]. Accounts of Chemical Research, 2020, 53(1): 255-264. doi: 10.1021/acs.accounts.9b00496
|
[79] |
RANRAN J, JARONIEC M, QIAO S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities[J]. Advanced Materials, 2018, 30(7): 1704649. doi: 10.1002/adma.201704649
|
[80] |
KHAKI M R D, SHAFEEYAN M S, RAMAN A A A, et al. Application of doped photocatalysts for organic pollutant degradation-A review[J]. Journal of Environmental Management, 2017, 198: 78-94.
|
[81] |
HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A, 2018, 6(19): 8978-8985. doi: 10.1039/C8TA02282H
|
[82] |
LIU H, MA S, SHAO L, et al. Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection[J]. Applied Catalysis B: Environmental, 2020, 261: 118201. doi: 10.1016/j.apcatb.2019.118201
|
[83] |
YU N, WANG X, QIU L, et al. Bacteria-triggered hyaluronan/AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application[J]. Chemical Engineering Journal, 2020, 380: 122582. doi: 10.1016/j.cej.2019.122582
|
[84] |
LI X, KANG B, DONG F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021, 81: 105671-105679. doi: 10.1016/j.nanoen.2020.105671
|
[85] |
FU J, XU Q, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565. doi: 10.1016/j.apcatb.2018.11.011
|
[86] |
CHEN Y, SU F, XIE H, et al. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2021, 404: 126498. doi: 10.1016/j.cej.2020.126498
|
[87] |
ZHEN Y, YANG C, SHEN H, et al. Photocatalytic performance and mechanism insights of a S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reactions under visible light[J]. Phys Chem Chem Phys, 2020, 22 (45): 26278-26288. doi: 10.1039/D0CP02199G
|
[88] |
LI H, WANG G, GONG H, et al. Hollow nanorods and amorphous Co9S8 quantum dots construct S-scheme heterojunction for efficient hydrogen evolution[J]. The Journal of Physical Chemistry C, 2021, 125(1): 648-659. doi: 10.1021/acs.jpcc.0c10239
|
[89] |
GE H, XU F, CHENG B, et al. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst[J]. Chem Cat Chem, 2019, 11(24): 6301-6309.
|
[90] |
HU T, DAI K, ZHANG J, et al. Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation[J]. Applied Catalysis B: Environmental, 2020, 269: 118844. doi: 10.1016/j.apcatb.2020.118844
|
[91] |
XU Q, MA D, YANG S, et al. Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation[J]. Applied Surface Science, 2019, 495: 143555. doi: 10.1016/j.apsusc.2019.143555
|
[92] |
梅子慧, 王国宏, 严素定, 等. 微波辅助快速制备2D/1D ZnIn2S4/TiO2 S-型异质结及其光催化制氢性能[J]. 物理化学学报, 2020, 37(6): 2009097-0. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX202106011.htm
|
[93] |
张梦凡, 张振民, 贾静雯, 等. Z-型异质结光催化剂的设计、制备和应用研究进展[J]. 有色金属科学与工程, 2020, 11(3): 18-32. doi: 10.13264/j.cnki.ysjskx.2020.03.003
|
[94] |
HUO Y, ZHANG J, DAI K, et al. Amine-modified S-scheme porous g-C3N4/CdSe-diethylenetriamine composite with enhanced photocatalytic CO2 reduction activity[J]. ACS Applied Energy Materials, 2021, 4(1): 956-968.
|
[95] |
XIE Q, HE W, LIU S, et al. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling[J]. Chinese Journal of Catalysis, 2020, 41(1): 140-153.
|
[96] |
WANG Z, CHEN Y, ZHANG L, et al. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity[J]. Journal of Materials Science Technology, 2020, 56: 143-150.
|
[97] |
DENG H, FEI X, YANG Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J]. Chemical Engineering Journal, 2021, 409.
|
[98] |
HE F, ZHU B, CHENG B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental, 2020, 272: 119006.
|
[99] |
HUO Y, ZHANG J, WANG Z, et al. Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction[J]. Journal of Colloid and Interface Science, 2021, 585: 684-693.
|
[100] |
WANG P, LIU Y, JIANG N, et al. Double S-scheme AgBr heterojunction co-modified with g-C3N4 and black phosphorus nanosheets greatly improves the photocatalytic activity and stability[J]. Journal of Molecular Liquids, 2021, 329: 115540.
|
[101] |
WU S, YU X, ZHANG J, et al. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal[J]. Chemical Engineering Journal, 2021, 411: 128555.
|
[102] |
JIA X, HAN Q, LIU H, et al. A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1-Br heterojunction with enhanced visible-light photocatalytic activity[J]. Chemical Engineering Journal, 2020, 399: 125701.
|
[103] |
CHEN J, LIU T, ZHANG H, et al. One-pot preparation of double S-scheme Bi2S3/MoO3/C3N4 heterojunctions with enhanced photocatalytic activity originated from the effective charge pairs partition and migration[J]. Applied Surface Science, 2020, 527: 146788.
|
[104] |
WU Y, SONG M, CHAI Z, et al. Integrating an Ag0-Ag+ mediated Ag2Ta4O11/Ag8(Nb0.5Ta0.5)26O69 heterojunction to quickly decontaminate indoor gaseous formaldehyde under indoor temperature, humidity and sunlight irradiation conditions[J]. Environmental Science: Nano, 2020, 7(6): 1831-1840.
|
[105] |
MENG S, SUN W, ZHANG S, et al. Insight into the Transfer Mechanism of Photogenerated Carriers for WO3/TiO2 Heterojunction Photocatalysts: Is It the Transfer of Band-Band or Z-Scheme Why[J]. The Journal of Physical Chemistry C, 2018, 122 (46): 26326-26336.
|
[106] |
RONGAN H, HAIJUAN L, HUIMIN L, et al. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance[J]. Journal of Materials Science & Technology, 2020, 52: 145-151.
|
[107] |
ZHANG K, ZHOU M, YU C, et al. Construction of S-scheme g-C3N4/ZrO2 heterostructures for enhancing photocatalytic disposals of pollutants and electrocatalytic hydrogen evolution[J]. Dyes and Pigments, 2020, 180: 108525.
|
[108] |
ZHANG B, SHI H, HU X, et al. A novel S-scheme MoS2/CdIn2S4 flower-like heterojunctions with enhanced photocatalytic degradation and H2 evolution activity[J]. Journal of Physics D: Applied Physics, 2020, 53 (20): 205101.
|
[109] |
UNUABONAH E I, UGWUJA C G, OMOROGIE M O, et al. Clays for efficient disinfection of bacteria in water[J]. Applied Clay Science, 2018, 151: 211-223.
|
[110] |
DING W, JIN W, CAO S, et al. Ozone disinfection of chlorine-resistant bacteria in drinking water[J]. Water Research, 2019, 160: 339-349.
|
[111] |
LIU H, MA S, SHAO L, et al. Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection[J]. Applied Catalysis B: Environmental, 2020, 261: 118201.
|
[112] |
LIN K, MARR L C. Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics[J]. Environmental Science & Technology, 2019, 54(2): 1024-1032.
|
[113] |
DENG J, LIANG J, LI M, et al. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr[J]. Colloids and Surfaces B: Biointerfaces, 2017, 152: 49-57.
|
[114] |
HOU C, HE W, WANG Z, et al. Particulate-aggregated adhesives with exudate-sensitive properties and sustained bacteria disinfection to facilitate wound healing[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31090-31098.
|
[115] |
WANG W, HUANG G, JIMMY C Y, et al. Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms[J]. Journal of Environmental Sciences, 2015, 34: 232-247.
|
[116] |
XIA P, CAO S, ZHU B, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angewandte Chemie International Edition, 2020, 59(13): 5218-5225.
|