Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HUANG Haohui, SUN Haipeng, FAN Qizhe, YU Changlin, JI Hongbing. Research progress in fabrication and application of S-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 68-79. DOI: 10.13264/j.cnki.ysjskx.2022.05.009
Citation: HUANG Haohui, SUN Haipeng, FAN Qizhe, YU Changlin, JI Hongbing. Research progress in fabrication and application of S-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 68-79. DOI: 10.13264/j.cnki.ysjskx.2022.05.009

Research progress in fabrication and application of S-scheme heterojunction photocatalysts

More Information
  • Received Date: September 27, 2021
  • Revised Date: September 04, 2022
  • Available Online: November 07, 2022
  • In recent years, researchers have proposed a new S-scheme heterojunction photocatalyst, which has distinct advantages in the effective separation of photogenerated electron-hole pairs, recombination of useless electrons and holes, high separation efficiency of charge carriers, and retention of strong oxidation reduction active sites. In this paper, the reaction mechanism and preparation method of S-scheme heterojunction photocatalyst and the research progress of its application in water decomposition to produce hydrogen, CO2 reduction, and the degradation and sterilization of pollutants have been summarized. Finally, prospects and challenges for the development of S-scheme photocatalytic systems are presented.
  • [1]
    BAHRUDIN N N, NAWI M A. Immobilized titanium dioxide/powdered activated carbon system for the photocatalytic adsorptive removal of phenol[J]. Korean Journal of Chemical Engineering, 2018, 35(7): 1532-1541. doi: 10.1007/s11814-018-0062-4
    [2]
    CHEN X, ZHANG J, ZENG J, et al. Novel 3D/2D heterojunction photocatalysts constructed by three-dimensional In2S3 dandelions and ultrathin hexagonal SnS2 nanosheets with excellent photocatalytic and photoelectrochemical activities[J]. Applied Surface Science, 2019, 463: 693-703. doi: 10.1016/j.apsusc.2018.09.013
    [3]
    YANG J, ZHU X, MO Z, et al. A multidimensional In2S3-CuInS2 heterostructure for photocatalytic carbon dioxide reduction[J]. Inorganic Chemistry Frontiers, 2018, 5(12): 3163-3169. doi: 10.1039/C8QI00924D
    [4]
    YUAN X, JIANG L, LIANG J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chemical Engineering Journal, 2019, 356: 371-381. doi: 10.1016/j.cej.2018.09.079
    [5]
    XIAO T, TANG Z, YANG Y, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2018, 220: 417-428. doi: 10.1016/j.apcatb.2017.08.070
    [6]
    JIANG R, WU D, LU G, et al. Modified 2D-2D ZnIn2S4/BiOCl van der Waals heterojunctions with CQDs: accelerated charge transfer and enhanced photocatalytic activity under vis-and NIR-light[J]. Chemosphere, 2019, 227: 82-92. doi: 10.1016/j.chemosphere.2019.04.038
    [7]
    ZHAO S, HU F, LI J. Hierarchical core-shell Al2O3@ Pd-CoAlO microspheres for low-temperature toluene combustion[J]. Acs Catalysis, 2016, 6(6): 3433-3441. doi: 10.1021/acscatal.6b00144
    [8]
    娄向东, 魏崇, 李炳鑫, 等. C@ ZnFe2O4/Ag3PO4复合材料的可见光催化性能研究[J]. 河南师范大学学报(自然科学版), 2019, 47(5): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX201905013.htm
    [9]
    王颖, 杨传玺, 王小宁, 等. 二维光催化材料研究进展[J]. 有色金属科学与工程, 2021, 12(2): 30-42. doi: 10.13264/j.cnki.ysjskx.2021.02.005
    [10]
    ZHAO Y, LIANG X, SHI H, et al. Photocatalytic activity enhanced by synergistic effects of nano-silver and ZnSe quantum dots co-loaded with bulk g-C3N4 for Ceftriaxone sodium degradation in aquatic environment[J]. Chemical Engineering Journal, 2018, 353: 56-68. doi: 10.1016/j.cej.2018.07.109
    [11]
    XU Y, GE F, CHEN Z, et al. One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance[J]. Applied Surface Science, 2019, 469: 739-746. doi: 10.1016/j.apsusc.2018.11.062
    [12]
    XU Y, LIU J, XIE M, et al. Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation[J]. Chemical Engineering Journal, 2019, 357: 487-497. doi: 10.1016/j.cej.2018.09.098
    [13]
    SHARMA G, KUMAR A, NAUSHAD M, et al. Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites[J]. Journal of Cleaner Production, 2018, 172: 2919-2930. doi: 10.1016/j.jclepro.2017.11.122
    [14]
    YE Z, LI J, ZHOU M, et al. Well-dispersed nebula-like ZnO/CeO2@ HNTs heterostructure for efficient photocatalytic degradation of tetracycline[J]. Chemical Engineering Journal, 2016, 304: 917-933. doi: 10.1016/j.cej.2016.07.014
    [15]
    LI X, CHEN D, LI N, et al. AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for water remediation[J]. Applied Catalysis B: Environmental, 2018, 229: 155-162. doi: 10.1016/j.apcatb.2018.02.028
    [16]
    WANG S, GUAN B Y, LU Y, et al. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction[J]. Journal of the American Chemical Society, 2017, 139(48): 17305-17308. doi: 10.1021/jacs.7b10733
    [17]
    XU F, ZHU B, CHENG B, et al. 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction[J]. Advanced Optical Materials, 2018, 6(23): 1800911. doi: 10.1002/adom.201800911
    [18]
    LOW J, DAI B, TONG T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J]. Advanced Materials, 2019, 31(6): 1802981. doi: 10.1002/adma.201802981
    [19]
    MIYAUCHI M, IRIE H, LIU M, et al. Visible-light-sensitive photocatalysts: nanocluster-grafted titanium dioxide for indoor environmental remediation[J]. Journal of Physical Chemistry Letters, 2016, 7(1): 75-84. doi: 10.1021/acs.jpclett.5b02041
    [20]
    刘山虎, 许庆峰, 邢瑞敏, 等. 二氧化钛光催化技术应用于室内甲醛降解的研究进展[J]. 化学研究, 2016, 27(4): 502-513. doi: 10.14002/j.hxya.2016.04.020
    [21]
    ZHU X, CHANG D L, LI X S, et al. Inherent rate constants and humidity impact factors of anatase TiO2 film in photocatalytic removal of formaldehyde from air[J]. Chemical Engineering Journal, 2015, 279: 897-903. doi: 10.1016/j.cej.2015.05.095
    [22]
    MAMAGHANI A H, HAGHIGHAT F, LEE C S. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art[J]. Applied Catalysis B: Environmental, 2017, 203: 247-269. doi: 10.1016/j.apcatb.2016.10.037
    [23]
    PETER I J, VIGNESH G, VIJAYA S, et al. Enhancing the power conversion efficiency of SrTiO3/CdS/Bi2S3 quantum dot based solar cell using phosphor[J]. Applied Surface Science, 2019, 494: 551-560. doi: 10.1016/j.apsusc.2019.07.092
    [24]
    HU B, CAI F, CHEN T, et al. Hydrothermal synthesis g-C3N4/Nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18247-18256.
    [25]
    LIU S, XIA J, YU J. Amine-functionalized titanate nanosheet-assembled yolk@ shell microspheres for efficient cocatalyst-free visible-light photocatalytic CO2 reduction[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8166-8175.
    [26]
    LIU X, YE M, ZHANG S, et al. Enhanced photocatalytic CO2 valorization over TiO2 hollow microspheres by synergetic surface tailoring and Au decoration[J]. Journal of Materials Chemistry A, 2018, 6(47): 24245-24255. doi: 10.1039/C8TA09661A
    [27]
    WEON S, CHOI J, PARK T, et al. Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2017, 205: 386-392. doi: 10.1016/j.apcatb.2016.12.048
    [28]
    FRIEDMANN D, HAKKI A, KIM H, et al. Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives[J]. Green Chemistry, 2016, 18(20): 5391-5411. doi: 10.1039/C6GC01582D
    [29]
    SUN H, DONG B, SU G, et al. Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity[J]. Applied Surface Science, 2015, 343: 181-187. doi: 10.1016/j.apsusc.2015.02.148
    [30]
    BAJOROWICZ B, KOWALSKA E, NADOLNA J, et al. Preparation of CdS and Bi2S3 quantum dots co-decorated perovskite-type KNbO3 ternary heterostructure with improved visible light photocatalytic activity and stability for phenol degradation[J]. Dalton Transactions, 2018, 47(42): 15232-15245. doi: 10.1039/C8DT03094D
    [31]
    LIU W, ZHONG D, DAI Z, et al. Synergetic utilization of photoabsorption and surface facet in crystalline/amorphous contacted BiOCl-Bi2S3 composite for photocatalytic degradation[J]. Journal of Alloys and Compounds, 2019, 780: 907-916. doi: 10.1016/j.jallcom.2018.12.003
    [32]
    SHI H, WANG C, ZHAO Y, et al. Highly efficient visible light driven photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8 composite[J]. Applied Catalysis B: Environmental, 2019, 254: 403-413. doi: 10.1016/j.apcatb.2019.05.020
    [33]
    NAUSHAD M, SHARMA G, ALOTHMAN Z A. Photodegradation of toxic dye using Gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel[J]. Journal of Cleaner Production, 2019, 241: 118263. doi: 10.1016/j.jclepro.2019.118263
    [34]
    LI F, LAN X, WANG L, et al. An efficient photocatalyst coating strategy for intimately coupled photocatalysis and biodegradation (ICPB): Powder spraying method[J]. Chemical Engineering Journal, 2020, 383: 123092. doi: 10.1016/j.cej.2019.123092
    [35]
    丁志伟, 张鹏, 刘玉民. CdS QDs/Bi2MoO6异质结光催化剂的制备及光催化性能研究[J]. 河南师范大学学报(自然科学版), 2020, 48(4): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX202004010.htm
    [36]
    HOU Y, LI X, ZHAO Q, et al. Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation[J]. Environmental Science & Technology, 2012, 46(7): 4042-4050.
    [37]
    BAI S, ZHANG N, GAO C, et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018, 53: 296-336. doi: 10.1016/j.nanoen.2018.08.058
    [38]
    QU Y, DUAN X. Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chemical Society Reviews, 2013, 42(7): 2568-2580. doi: 10.1039/C2CS35355E
    [39]
    TERANISHI T, SAKAMOTO M. Charge separation in type-Ⅱ semiconductor heterodimers[J]. The Journal of Physical Chemistry Letters, 2013, 4(17): 2867-2873. doi: 10.1021/jz4013504
    [40]
    魏龙福, 余长林, 陈建钗, 等. 水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J]. 有色金属科学与工程, 2014, 5(1): 47-47. doi: 10.13264/j.cnki.ysjskx.2014.01.009
    [41]
    薛霜霜, 何洪波, 吴榛, 等. 研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J]. 有色金属科学与工程, 2017, 8(1): 86-88. doi: 10.13264/j.cnki.ysjskx.2017.01.015
    [42]
    LOW J, JIANG C, CHENG B, et al. A review of direct Z-scheme photocatalysts[J]. Small Methods, 2017, 1(5): 1700080. doi: 10.1002/smtd.201700080
    [43]
    KUMAR A, PRAJAPATI P K, PAL U, et al. Ternary rGO/InVO4/Fe2O3 Z-scheme heterostructured photocatalyst for CO2 reduction under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8201-8211.
    [44]
    BHOSALE R, JAIN S, VINOD C P, et al. Direct Z-scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6174-6183.
    [45]
    HE F, MENG A, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41(1): 9-20. doi: 10.1016/S1872-2067(19)63382-6
    [46]
    黄海猛, 王常旺, 肖林昊. 非简并半导体中费米能级的简单计算及应用[J]. 大学物理, 2020, 39(1): 29-32. doi: 10.16854/j.cnki.1000-0712.190177
    [47]
    XU C, LIU X, LI D, et al. Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20114-20124.
    [48]
    LOW J, YU J, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. doi: 10.1002/adma.201601694
    [49]
    SUN S. Recent advances in hybrid Cu2O-based heterogeneous nanostructures[J]. Nanoscale, 2015, 7(25): 10850-10882. doi: 10.1039/C5NR02178B
    [50]
    XIAO J, XIE Y, CAO H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation[J]. Chemosphere, 2015, 121: 1-17. doi: 10.1016/j.chemosphere.2014.10.072
    [51]
    曾德彬, 杨凯, 李笑笑, 等. Ag2CO3@AgBr复合光催化剂的制备、表征及其可见光催化性能[J]. 有色金属科学与工程, 2018, 9(1): 51-59. doi: 10.13264/j.cnki.ysjskx.2018.01.009
    [52]
    LIU J J, CHENG B, YU J. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 31175-31183. doi: 10.1039/C6CP06147H
    [53]
    ZENG D, YANG K, YU C, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 237: 449-463. doi: 10.1016/j.apcatb.2018.06.010
    [54]
    ZHOU D, CHEN Z, YANG Q, et al. Facile Construction of g-C3N4 Nanosheets/TiO2 Nanotube Arrays as Z-Scheme Photocatalyst with Enhanced Visible-Light Performance[J]. ChemCatChem, 2016, 8(19): 3064-3073. doi: 10.1002/cctc.201600828
    [55]
    SHAO B, LIU X, LIU Z, et al. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation[J]. Chemical Engineering Journal, 2019, 368: 730-745. doi: 10.1016/j.cej.2019.03.013
    [56]
    XU Q, ZHANG L, CHENG B, et al. S-Scheme Heterojunction Photocatalyst[J]. Chem, 2020, 6 (7): 1543-1559. doi: 10.1016/j.chempr.2020.06.010
    [57]
    樊谨菘, 陈静, 李江, 等. X射线辐照合成金纳米颗粒及其原位表征[J]. 辐射研究与辐射工艺学报, 2021, 39(4): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FYFG202104001.htm
    [58]
    BARR T L. Modern ESCA: The principles and practice of X-ray photoelectron spectroscopy[M]. New York: CRC Press, 2020.
    [59]
    王冰花, 陈金龙, 张彬. 原子力显微镜在高分子表征中的应用[J/OL]. 高分子学报: 1-15[2021-09-16].
    [60]
    张薇, 侯矍, 李楠, 等. 基于原子力显微镜的单分子力谱技术在高分子表征中的应用[J/OL]. 高分子学报: 1-24[2021-09-16].
    [61]
    NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117(17): 11302-11336. doi: 10.1021/acs.chemrev.7b00161
    [62]
    DENG Y, ZHAO R. Advanced oxidation processes (AOPs) in wastewater treatment[J]. Current Pollution Reports, 2015, 1(3): 167-176. doi: 10.1007/s40726-015-0015-z
    [63]
    HUANG C P, DONG C, TANG Z. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment[J]. Waste Management, 1993, 13(5-7): 361-377. doi: 10.1016/0956-053X(93)90070-D
    [64]
    LIANG Y H, LIAO M W, MISHRA M, et al. Fabrication of Ta3N5/ZnO direct Z-scheme photocatalyst for hydrogen generation[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19162-19167. doi: 10.1016/j.ijhydene.2018.07.117
    [65]
    WANG S, ZHU B, LIU M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Catalysis B: Environmental, 2019, 243: 19-26. doi: 10.1016/j.apcatb.2018.10.019
    [66]
    XU F, ZHANG L, CHENG B, et al. Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12291-12298.
    [67]
    王占国. 半导体材料研究的新进展[J]. 半导体技术, 2002, 8(3): 12-14. doi: 10.13290/j.cnki.bdtjs.2002.04.003
    [68]
    孙朝宁, 贺光辉, 赵振博, 等. 半导体材料国内外标准研究进展[J]. 中国标准化, 2021(15): 132-135, 146. doi: 10.3969/j.issn.1002-5944.2021.15.017
    [69]
    SCHRODER D K. Semiconductor material and device characterization[M]. Phoenix Lieb press, 2009.
    [70]
    SCHNEIDER J J, HOFFMANN R C, ENGSTLER J, et al. A printed and flexible field-effect transistor device with nanoscale zinc oxide as active semiconductor material[J]. Advanced Materials, 2008, 20(18): 3383-3387. doi: 10.1002/adma.200800819
    [71]
    XU Q, ZHANG L, YU J, et al. Direct Z-scheme photocatalysts: principles, synthesis, and applications[J]. Materials Today, 2018, 21(10): 1042-1063. doi: 10.1016/j.mattod.2018.04.008
    [72]
    ZHANG J, XU Q, FENG Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte Chemie, 2008, 120(9): 1790-1793. doi: 10.1002/ange.200704788
    [73]
    DONG H, ZHANG X, LI J, et al. Construction of morphology-controlled nonmetal 2D/3D homojunction towards enhancing photocatalytic activty and mechanism insight[J]. Applied Catalysis B: Environmental, 2020, 263: 118270. doi: 10.1016/j.apcatb.2019.118270
    [74]
    温福宇, 杨金辉, 宗旭, 等. 太阳能光催化制氢研究进展[J]. 化学进展, 2009, 21(11): 2285-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200911005.htm
    [75]
    WANG Q, HISATOMI T, JIA Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials, 2016, 15(6): 611. doi: 10.1038/nmat4589
    [76]
    KUMAR S S, HIMABINDU V. Hydrogen production by PEM water electrolysis-A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. doi: 10.1016/j.mset.2019.03.002
    [77]
    DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. doi: 10.1016/j.ijhydene.2019.12.059
    [78]
    ZHANG S, FAN Q, XIA R, et al. CO2 reduction: from homogeneous to heterogeneous electrocatalysis[J]. Accounts of Chemical Research, 2020, 53(1): 255-264. doi: 10.1021/acs.accounts.9b00496
    [79]
    RANRAN J, JARONIEC M, QIAO S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities[J]. Advanced Materials, 2018, 30(7): 1704649. doi: 10.1002/adma.201704649
    [80]
    KHAKI M R D, SHAFEEYAN M S, RAMAN A A A, et al. Application of doped photocatalysts for organic pollutant degradation-A review[J]. Journal of Environmental Management, 2017, 198: 78-94.
    [81]
    HUANG B C, JIANG J, HUANG G X, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A, 2018, 6(19): 8978-8985. doi: 10.1039/C8TA02282H
    [82]
    LIU H, MA S, SHAO L, et al. Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection[J]. Applied Catalysis B: Environmental, 2020, 261: 118201. doi: 10.1016/j.apcatb.2019.118201
    [83]
    YU N, WANG X, QIU L, et al. Bacteria-triggered hyaluronan/AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application[J]. Chemical Engineering Journal, 2020, 380: 122582. doi: 10.1016/j.cej.2019.122582
    [84]
    LI X, KANG B, DONG F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021, 81: 105671-105679. doi: 10.1016/j.nanoen.2020.105671
    [85]
    FU J, XU Q, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565. doi: 10.1016/j.apcatb.2018.11.011
    [86]
    CHEN Y, SU F, XIE H, et al. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2021, 404: 126498. doi: 10.1016/j.cej.2020.126498
    [87]
    ZHEN Y, YANG C, SHEN H, et al. Photocatalytic performance and mechanism insights of a S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reactions under visible light[J]. Phys Chem Chem Phys, 2020, 22 (45): 26278-26288. doi: 10.1039/D0CP02199G
    [88]
    LI H, WANG G, GONG H, et al. Hollow nanorods and amorphous Co9S8 quantum dots construct S-scheme heterojunction for efficient hydrogen evolution[J]. The Journal of Physical Chemistry C, 2021, 125(1): 648-659. doi: 10.1021/acs.jpcc.0c10239
    [89]
    GE H, XU F, CHENG B, et al. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst[J]. Chem Cat Chem, 2019, 11(24): 6301-6309.
    [90]
    HU T, DAI K, ZHANG J, et al. Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation[J]. Applied Catalysis B: Environmental, 2020, 269: 118844. doi: 10.1016/j.apcatb.2020.118844
    [91]
    XU Q, MA D, YANG S, et al. Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation[J]. Applied Surface Science, 2019, 495: 143555. doi: 10.1016/j.apsusc.2019.143555
    [92]
    梅子慧, 王国宏, 严素定, 等. 微波辅助快速制备2D/1D ZnIn2S4/TiO2 S-型异质结及其光催化制氢性能[J]. 物理化学学报, 2020, 37(6): 2009097-0. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX202106011.htm
    [93]
    张梦凡, 张振民, 贾静雯, 等. Z-型异质结光催化剂的设计、制备和应用研究进展[J]. 有色金属科学与工程, 2020, 11(3): 18-32. doi: 10.13264/j.cnki.ysjskx.2020.03.003
    [94]
    HUO Y, ZHANG J, DAI K, et al. Amine-modified S-scheme porous g-C3N4/CdSe-diethylenetriamine composite with enhanced photocatalytic CO2 reduction activity[J]. ACS Applied Energy Materials, 2021, 4(1): 956-968.
    [95]
    XIE Q, HE W, LIU S, et al. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling[J]. Chinese Journal of Catalysis, 2020, 41(1): 140-153.
    [96]
    WANG Z, CHEN Y, ZHANG L, et al. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity[J]. Journal of Materials Science Technology, 2020, 56: 143-150.
    [97]
    DENG H, FEI X, YANG Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J]. Chemical Engineering Journal, 2021, 409.
    [98]
    HE F, ZHU B, CHENG B, et al. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental, 2020, 272: 119006.
    [99]
    HUO Y, ZHANG J, WANG Z, et al. Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction[J]. Journal of Colloid and Interface Science, 2021, 585: 684-693.
    [100]
    WANG P, LIU Y, JIANG N, et al. Double S-scheme AgBr heterojunction co-modified with g-C3N4 and black phosphorus nanosheets greatly improves the photocatalytic activity and stability[J]. Journal of Molecular Liquids, 2021, 329: 115540.
    [101]
    WU S, YU X, ZHANG J, et al. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal[J]. Chemical Engineering Journal, 2021, 411: 128555.
    [102]
    JIA X, HAN Q, LIU H, et al. A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1-Br heterojunction with enhanced visible-light photocatalytic activity[J]. Chemical Engineering Journal, 2020, 399: 125701.
    [103]
    CHEN J, LIU T, ZHANG H, et al. One-pot preparation of double S-scheme Bi2S3/MoO3/C3N4 heterojunctions with enhanced photocatalytic activity originated from the effective charge pairs partition and migration[J]. Applied Surface Science, 2020, 527: 146788.
    [104]
    WU Y, SONG M, CHAI Z, et al. Integrating an Ag0-Ag+ mediated Ag2Ta4O11/Ag8(Nb0.5Ta0.5)26O69 heterojunction to quickly decontaminate indoor gaseous formaldehyde under indoor temperature, humidity and sunlight irradiation conditions[J]. Environmental Science: Nano, 2020, 7(6): 1831-1840.
    [105]
    MENG S, SUN W, ZHANG S, et al. Insight into the Transfer Mechanism of Photogenerated Carriers for WO3/TiO2 Heterojunction Photocatalysts: Is It the Transfer of Band-Band or Z-Scheme Why[J]. The Journal of Physical Chemistry C, 2018, 122 (46): 26326-26336.
    [106]
    RONGAN H, HAIJUAN L, HUIMIN L, et al. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance[J]. Journal of Materials Science & Technology, 2020, 52: 145-151.
    [107]
    ZHANG K, ZHOU M, YU C, et al. Construction of S-scheme g-C3N4/ZrO2 heterostructures for enhancing photocatalytic disposals of pollutants and electrocatalytic hydrogen evolution[J]. Dyes and Pigments, 2020, 180: 108525.
    [108]
    ZHANG B, SHI H, HU X, et al. A novel S-scheme MoS2/CdIn2S4 flower-like heterojunctions with enhanced photocatalytic degradation and H2 evolution activity[J]. Journal of Physics D: Applied Physics, 2020, 53 (20): 205101.
    [109]
    UNUABONAH E I, UGWUJA C G, OMOROGIE M O, et al. Clays for efficient disinfection of bacteria in water[J]. Applied Clay Science, 2018, 151: 211-223.
    [110]
    DING W, JIN W, CAO S, et al. Ozone disinfection of chlorine-resistant bacteria in drinking water[J]. Water Research, 2019, 160: 339-349.
    [111]
    LIU H, MA S, SHAO L, et al. Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection[J]. Applied Catalysis B: Environmental, 2020, 261: 118201.
    [112]
    LIN K, MARR L C. Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics[J]. Environmental Science & Technology, 2019, 54(2): 1024-1032.
    [113]
    DENG J, LIANG J, LI M, et al. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr[J]. Colloids and Surfaces B: Biointerfaces, 2017, 152: 49-57.
    [114]
    HOU C, HE W, WANG Z, et al. Particulate-aggregated adhesives with exudate-sensitive properties and sustained bacteria disinfection to facilitate wound healing[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31090-31098.
    [115]
    WANG W, HUANG G, JIMMY C Y, et al. Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms[J]. Journal of Environmental Sciences, 2015, 34: 232-247.
    [116]
    XIA P, CAO S, ZHU B, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angewandte Chemie International Edition, 2020, 59(13): 5218-5225.
  • Related Articles

    [1]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [2]MA Mengxia, YAN Xu, YAN Qun, MAO Yanli, KANG Haiyan, YAN Xiaole. Research progress on biochar-based photocatalytic materials for antibiotic degradation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 765-773. DOI: 10.13264/j.cnki.ysjskx.2024.05.017
    [3]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [4]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [5]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [6]ZHANG Mengfan, ZHANG Zhenmin, JIA Jingwen, YU Changlin, YANG Kai. Research progress in the design, fabrication and application of Z-scheme heterojunction photocatalysts[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 18-32. DOI: 10.13264/j.cnki.ysjskx.2020.03.003
    [7]WANG Shuhong, LIU Xin, KONG Bin, LU Jiawei, LI Hong, LIU Liequan, WANG Jinjin, CHEN Juan, HUANG Weiya. Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 68-76. DOI: 10.13264/j.cnki.ysjskx.2019.02.010
    [8]TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
    [9]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [10]PENG Bing, LIU Qin, CHAI Li-yuan, ZHANG Qiang, YAN Guo-meng. CurreResearch on degradation of methyl orange by using nano-TiO2 photocatalytic cement[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 1-7. DOI: 10.13264/j.cnki.ysjskx.2012.06.008

Catalog

    Article Metrics

    Article views (375) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return