Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YU Jiancheng, MA Baozhong, MA Yutian, ZHAO Jian, WANG Chengyan. Ammonia recovery of research progress of cobalt resources[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 20-28. DOI: 10.13264/j.cnki.ysjskx.2021.03.003
Citation: YU Jiancheng, MA Baozhong, MA Yutian, ZHAO Jian, WANG Chengyan. Ammonia recovery of research progress of cobalt resources[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 20-28. DOI: 10.13264/j.cnki.ysjskx.2021.03.003

Ammonia recovery of research progress of cobalt resources

More Information
  • Received Date: March 23, 2021
  • Published Date: June 29, 2021
  • As an important strategic resource, cobalt plays an important role in alloy materials, catalytic materials and battery materials. In the typical hydrometallurgical recovery process of cobalt, ammonia leaching has the advantages of pure leaching solution, short process, and low cost. It is widely used in the smelting of cobalt minerals and the recovery of secondary resources. The ammonia recovery process of cobalt resources at home and abroad in recent years have been systematically summarized in this article, including the principle and process of ammonia leaching, and the recovery of cobalt in the ammonia leaching solution. In the ammonia leaching process, the right choice of ammonia-ammonium salt leaching system is very important, and according to the composition of the raw materials, add a certain reducing agent or oxidant to increase the leaching rate. The current methods for recovering and preparing cobalt products from ammonia leaching liquid still have disadvantages such as high cost and small processing volume. Therefore, developing efficient and economical methods for recovering and preparing cobalt products from ammonia leaching liquid will become the focus of future research.
  • [1]
    JOO S H, SHIN D J, OH C, et al. Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic10 acid and LIX84-I[J]. Hydrometallurgy, 2016, 159: 65-74. doi: 10.1016/j.hydromet.2015.10.012
    [2]
    DOLOTKO O, HLOVA I Z, MUDRYK Y, et al. Mechanochemical recovery of Co and Li from LCO cathode of lithium-ion battery[J]. Journal of Alloys and Compounds, 2020, 824: 153876. doi: 10.1016/j.jallcom.2020.153876
    [3]
    HUANG Y, ZHANG Z, CAO Y, et al. Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue-a review[J]. Hydrometallurgy, 2020, 193: 105327. doi: 10.1016/j.hydromet.2020.105327
    [4]
    PARK K H, MOHAPATRA D, REDDY B R, et al. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte[J]. Hydrometallurgy, 2007, 86(3/4): 164-171. http://www.sciencedirect.com/science/article/pii/S0304386X0600274X
    [5]
    刘俊. 低品位水钴矿中有价金属的回收工艺研究[D]. 武汉: 武汉工程大学, 2011.
    [6]
    徐晶晶, 张涛, 郭洪周, 等. 大洋钴资源前景与开发展望[J]. 矿产综合利用, 2019(6): 13-17. doi: 10.3969/j.issn.1000-6532.2019.06.003
    [7]
    周艳晶, 梁海峰, 李建武, 等. 钴资源供需格局及全球布局研究[J]. 中国矿业, 2019, 28(7): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201907012.htm
    [8]
    NANSAI K, NAKAJIMA K, KAGAWA S, et al. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan[J]. Environmental Science & Technology, 2015, 49(4): 2022. http://europepmc.org/abstract/med/25622132
    [9]
    王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739-750. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904005.htm
    [10]
    曾宪勤. 全球钴资源供应变动趋势及风险分析[J]. 中国资源综合利用, 2019, 37(7): 86-87. doi: 10.3969/j.issn.1008-9500.2019.07.027
    [11]
    李成伟, 王家义. 全球钴资源供应现状简析[J]. 中国资源综合利用, 2018, 36(7): 102-103. doi: 10.3969/j.issn.1008-9500.2018.07.036
    [12]
    黄晓兵. 中国钴资源安全评估[D]. 北京: 中国地质大学(北京), 2018.
    [13]
    刘超, 陈甲斌. 全球钴资源供需形势分析[J]. 国土资源情报, 2020(10): 27-33. doi: 10.3969/j.issn.1674-3709.2020.10.005
    [14]
    袁启奇. 中国钴市场浅谈[J]. 中国金属通报, 2018(1): 21-23. doi: 10.3969/j.issn.1672-1667.2018.01.006
    [15]
    乐颂光. 钴冶金[M]. 北京: 冶金工业出版社, 1987.
    [16]
    YOO K, KIM H. Development of ammoniacal leaching processes; A review[J]. Journal of the Korean Chemical Society, 2012, 21(5): 3-17. http://www.researchgate.net/publication/264070679_Development_of_Ammoniacal_Leaching_Processes_A_Review
    [17]
    ZHAO T, LIU L, LI G, et al. Zinc and cobalt recovery from Co-Ni residue of zinc hydrometallurgy by an ammonia process[J]. Advanced Materials Research, 2011, 396/397/398: 48-51. http://www.scientific.net/AMR.396-398.48
    [18]
    王成彦, 马保中. 红土镍矿冶炼[M]. 北京: 冶金工业出版社, 2020.
    [19]
    王开毅, 蔡春林, 钱东, 等. 钴渣氨浸工艺的研究[J]. 稀有金属, 2001(4): 312-314. doi: 10.3969/j.issn.0258-7076.2001.04.017
    [20]
    YANG B, FAN M, LI L, et al. Recovery of metal values from low-grade heterogenite with reductive ammonia leaching method[J]. Advanced Materials Research, 2014, 910: 110-113. doi: 10.4028/www.scientific.net/AMR.910.110
    [21]
    吴江华, 宁顺明, 佘宗华, 等. 高锰镍钴原料的还原氨浸工艺研究[J]. 矿冶工程, 2015, 35(5): 76-79. doi: 10.3969/j.issn.0253-6099.2015.05.021
    [22]
    KU H, JUNG Y, JO M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching[J]. Journal of Hazardous Materials, 2016, 313: 138-146. doi: 10.1016/j.jhazmat.2016.03.062
    [23]
    ZHENG X, GAO W, ZHANG X, et al. Spent lithium-ion battery recycling-reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688. doi: 10.1016/j.wasman.2016.12.007
    [24]
    CHEN Y, LIU N, HU F, et al. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management, 2018, 75: 469-476. doi: 10.1016/j.wasman.2018.02.024
    [25]
    MENG K, CAO Y, ZHANG B, et al. Comparison of the ammoniacal leaching behavior of layered LiNixCoyMn1-x-yO2 (x=1/3, 0.5, 0.8) cathode materials[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7750-7759.
    [26]
    WU C, LI B, YUAN C, et al. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching[J]. Waste Management, 2019, 93: 153-161. doi: 10.1016/j.wasman.2019.04.039
    [27]
    WANG S, WANG C, LAI F, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts[J]. Waste Management, 2019, 102: 122-130.
    [28]
    SUN H, WANG J, BI J, et al. Investigating the Cu-based catalysts for char catalytic hydrogasification and its recovery[J]. Fuel, 2021, 294(4/5): 120567. http://www.sciencedirect.com/science/article/pii/S0016236121004439
    [29]
    HUANG Y, ZHANG Z, CAO Y, et al. Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue- a review[J]. Hydrometallurgy, 2020, 193: 105327. doi: 10.1016/j.hydromet.2020.105327
    [30]
    ZHAO T K, LIU L H, LI G M, et al. Zinc and cobalt recovery from Co-Ni residue of zinc hydrometallurgy by an ammonia process[J]. Advanced Materials Research, 2011, 396/397/398: 48-51. http://www.scientific.net/AMR.396-398.48
    [31]
    KATSIAPI A, TSAKIRIDIS P E, OUSTADAKIS P, et al. Cobalt recovery from mixed Co-Mn hydroxide precipitates by ammonia-ammonium carbonate leaching[J]. Minerals Engineering, 2010, 23(8): 643-651. doi: 10.1016/j.mineng.2010.03.006
    [32]
    LIU Z, YIN Z, XIONG S, et al. Leaching and kinetic modeling of calcareous bornite in ammonia ammonium sulfate solution with sodium persulfate[J]. Hydrometallurgy, 2014, 144/145: 86-90. doi: 10.1016/j.hydromet.2014.01.011
    [33]
    周鸿燕, 付万发. 无机化学[M]. 西安: 西安交通大学出版社, 2018.
    [34]
    WEIR D R, KOFLUK R P. Separation of cobalt from nickel and cobalt bearing ammoniacal solutions. US, 3716618[P].1973-02-13.
    [35]
    林江顺, 蒋开喜. 钴锰渣除杂提钴工艺研究[J]. 有色金属, 2002(3): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200203010.htm
    [36]
    何沁华. PTA生产中废钴锰催化剂资源循环利用[D]. 常州: 江苏理工学院, 2016.
    [37]
    尚通明, 魏成文, 高峰, 等. 一种由钴氨络合物制备钴产品的方法: 中国, CN108396156A[P]. 2018-08-14.
    [38]
    昝林寒. 氢还原法制备超细钴粉研究[D]. 昆明: 昆明理工大学, 2010.
    [39]
    KUNDA W, HITESMAN R. The reduction of cobalt from its aqueous ammine ammonium sulphate system using hydrogen under pressure[J]. Hydrometallurgy, 1979, 4(4): 347-375. doi: 10.1016/0304-386X(79)90033-1
    [40]
    陆述贤, 尹才硚, 甘照平, 等. 从阿尔巴尼亚红土矿中综合回收镍钴铁[J]. 有色金属, 1981(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS198101023.htm
    [41]
    CHEN J H, MAI L. A separation of manganese (Ⅱ) and cobalt (Ⅱ) ions by D2EHPA/TBP-immobilized PolyHIPE membrane[J]. Membrane Water Treatment, 2019, 10(2): 127-137. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112931250.html
    [42]
    KUMBASAR R A. Selective extraction and concentration of cobalt from acidic leach solution containing cobalt and nickel through emulsion liquid membrane using PC-88A as extractant[J]. Separation & Purification Technology, 2009, 64(3): 273-279. http://www.sciencedirect.com/science/article/pii/S138358660800378X
    [43]
    TSAKIRIDIS P E, AGATZINI L S. Process for the recovery of cobalt and nickel in the presence of magnesium from sulphate solutions by Cyanex 272 and Cyanex 302[J]. Minerals Engineering, 2004, 17(7/8): 913-923. http://www.sciencedirect.com/science/article/pii/S0892687504000846
    [44]
    陈小红. 从废水处理铁渣中选择性提取钴和铜的工艺研究[D]. 长沙: 中南大学, 2014.
    [45]
    吴继宝. 从氨性碳酸铵浸出溶液中溶剂萃取钴和镍[J]. 湿法冶金, 1992(4): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ199204012.htm
    [46]
    JANA R K, PANDEY B D, PREMCHAND. Ammoniacal leaching of roast reduced deep-sea manganese nodules[J]. Hydrometallurgy, 1999, 53(1): 45-56. doi: 10.1016/S0304-386X(99)00031-6
    [47]
    刘吉利, 谢宏伟, 王锦霞, 等. 电解质水溶液中钴、镍分离、提纯研究进展[J]. 有色金属科学与工程, 2019, 10(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201901001.htm
    [48]
    黄涛, 陈丽杰, 张喆秋, 等. 离子交换法从氧化铜钴矿加压氨浸液中分离铜钴的研究[J]. 有色金属(冶炼部分), 2018(4): 1-6. doi: 10.3969/j.issn.1007-7545.2018.04.001
    [49]
    杜虎. 氧化钴生产废水中钴去除方法的研究[D]. 长沙: 中南大学, 2013.
    [50]
    HATCH W R. Cobalt ion exchange process. US: 4042665[P].1977-08-16.
    [51]
    HURST F J. Separation of cobalt from nickel in ammonia-ammonium carbonate solutions using pressurized ion exchange[J]. Hydrometallurgy, 1976, 1(4): 319-338. doi: 10.1016/0304-386X(76)90034-7
    [52]
    夏光祥. 用蒸餾法自氨性溶液中回收金属[J]. 有色金属(冶炼部分), 1965(8): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-METE196508002.htm
    [53]
    张鑫. 氨法浸锌液制备活性氧化锌的技术及机理研究[D]. 长沙: 中南大学, 2012.
    [54]
    XU Y, LI J, LIU L. Current status and future perspective of recycling copper by hydrometallurgy from waste printed circuit boards[J]. Procedia Environmental Sciences, 2016, 31: 162-170. doi: 10.1016/j.proenv.2016.02.022
    [55]
    RAO S, ZHANG D, YANG T, et al. Recovery of zinc and the regeneration of the complexation agent from the NH4Cl-NH3-NTA system[J]. Hydrometallurgy, 2017, 169: 508-514. doi: 10.1016/j.hydromet.2017.03.012
    [56]
    WANG H, HUANG K, ZHANG Y, et al. Recovery of lithium, nickel and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11489-11495. http://www.researchgate.net/publication/320743308_Recovery_of_Lithium_Nickel_and_Cobalt_from_Spent_Lithium-Ion_Battery_Powders_by_Selective_Ammonia_Leaching_and_an_Adsorption_Separation_System
  • Related Articles

    [1]LUO Xiaojuan, LUO Kai, ZHONG Zhaohuang, LI Xindong. Treatment of ionic rare earth smelting wastewater by a membrane bioreactor based on aerobic granular sludge[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 439-446. DOI: 10.13264/j.cnki.ysjskx.2023.03.017
    [2]ZENG Yu, ZENG Minjing, CHENG Yuanyuan, LONG Bei, LI Xindong, ZHANG Binchao, HUANG Sinong, YI Mingru, LIN Shutao, CHEN Yueru. Cultivation of aerobic granular sludge and its degradation effect on low C/N ratio wastewater[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 104-111. DOI: 10.13264/j.cnki.ysjskx.2021.04.014
    [3]ZHANG Binchao, HUANG Sinong, ZENG Minjing, LIN Shutao, ZHANG Linan, ZENG Yu, CHENG Yuanyuan, LONG Bei. Recovery of aerobic granular sludge in a sequencing batch reactor by inoculating stored granules with different storage methods[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 104-111. DOI: 10.13264/j.cnki.ysjskx.2020.02.015
    [4]LI Huajie, HUANG Desheng. Research on rare-earth metal high temperature electrolytic powder feeder and its control mode of feeding[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 98-102. DOI: 10.13264/j.cnki.ysjskx.2019.01.016
    [5]ZHANG Linan, XUAN Xinpeng, CHENG Yuanyuan, WANG Jianqi, HUANG Sinong, LONG Bei. Effect of pH on stability of aerobic granular sludge[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 87-91. DOI: 10.13264/j.cnki.ysjskx.2019.01.014
    [6]ZENG Yang, LIU Baipu, DENG Fei, LI Zhipeng. Research on optimizing structure parameters in Taoxikeng Tungsten Mine[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 70-75. DOI: 10.13264/j.cnki.ysjskx.2018.03.012
    [7]WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008
    [8]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [9]YI Yu, SHI Jing, GUO Xueyi. Effect of processing parameters on ultrafine silver particles prepared by spray-pyrolysis of AgNO3 solution[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 6-15. DOI: 10.13264/j.cnki.ysjskx.2015.03.002
    [10]YANG Rui-fang, LIAO Liang, SHAO Chun-xin, XIE Jian-qiu. Study on Preparation Technique of Yttrium Nitride Powder[J]. Nonferrous Metals Science and Engineering, 2006, 20(2): 29-31.

Catalog

    Article Metrics

    Article views (373) PDF downloads (22) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return