Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DU Ruian, MA Xiaoshuai, ZHANG Mengdi, CHEN Fanyun, YU Changlin. Synthesis of multi-walled carbon nanotubes/TiO2 composites and their photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 75-84. DOI: 10.13264/j.cnki.ysjskx.2019.05.012
Citation: DU Ruian, MA Xiaoshuai, ZHANG Mengdi, CHEN Fanyun, YU Changlin. Synthesis of multi-walled carbon nanotubes/TiO2 composites and their photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 75-84. DOI: 10.13264/j.cnki.ysjskx.2019.05.012

Synthesis of multi-walled carbon nanotubes/TiO2 composites and their photocatalytic performance

More Information
  • Received Date: April 04, 2019
  • Published Date: October 30, 2019
  • TiO2 is widely used in environmental pollution management, new energy conversion and sensors, etc. Broadening the spectral response range of nano-TiO2 proves to be an effective research method to improve the photocatalytic performance of TiO2 as the separation efficiency of electron-positron pair photoproduction can improve a lot. In this paper, multi-walled carbon nanotubes and isopropyl titanate are used as raw materials to synthesize TiO2 photocatalyst supported on carbon nanotubes by sol-gel method. The catalyst is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), etc. The photocatalytic degradation of methylene blue by 365 nm ultraviolet irradiation is observed to study the effect of different contents of TiO2 loaded on carbon nanotubes on the photocatalytic activity of TiO2. The experimental results show that the photocatalytic effect of TiO2 has improves a lot when 2% TiO2 is loaded on the carbon nanotube and its degradation rate of methylene blue reaches 90.6 %. After carbon nanotubes are loaded with TiO2, their specific surface area, absorption capacity of visible light, photocurrent intensity, the lifetime of photogenerated electrons all increase. At the same time, the close interfacial contact between carbon nanotubes and TiO2 causes the shortening of Ti-O bonds, which facilitates the separation of photogenerated electrons and holes, producing a large number of active groups such as h+, ·OH and super-oxygen free radicals that can effectively improve the photocatalytic properties of TiO2.
  • [1]
    HUSSAIN H, TOCCI G, WOOLCOT T, et al. Structure of a model TiO2 photocatalytic interface[J]. Nature Materials, 2017, 16(4): 461-468. doi: 10.1038/nmat4793
    [2]
    SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. doi: 10.1021/cr5001892
    [3]
    苏娟, 陈接胜.二氧化钛多孔材料及其性能研究进展[J].应用化学, 2018, 35(9): 1126-1132. http://d.old.wanfangdata.com.cn/Periodical/yyhx201809018
    [4]
    HWANG J Y, MYUNG S T, LEE J H, et al. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes[J]. Nano Energy, 2015, 16(17): 218-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=02af712a29982ac6fa77559442dc3f71
    [5]
    余长林, 周晚琴, 操芳芳, 等.室温下超声波辐照制备介孔结构的TiO2及其光催化性能[J].声学学报, 2012, 37(4): 393-400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201204006
    [6]
    PENG G, WU J, WU S, et al. Perovskite solar cells based on bottom-fused TiO2 nanocones[J]. Journal of Materials Chemistry A, 2016, 4(4):1520-1530. doi: 10.1039/C5TA08375C
    [7]
    WU Y, LIU X, YANG Z, et al. Energy storage: nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries[J]. Small, 2016, 12(26): 3474-3474. doi: 10.1002/smll.201670126
    [8]
    ZHANG Q, UCHAKER E, CANDELARIA S L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews, 2013, 42(7): 3127-3171. doi: 10.1039/c3cs00009e
    [9]
    ZHOU W, WANG Y, ZHANG L, et al. Anatase TiO2 hollow nanospheres with ultrathin shell exhibit superior Lithium storage property[J]. International Journal of Electrochemical Science, 2015, 10(7): 5942-5949.
    [10]
    余长林, 杨凯.异质结构的复合光催化材料的研究新进展[J].有色金属科学与工程, 2010, 1(6): 16-21. http://www.cnki.com.cn/Article/CJFDTotal-JXYS201006004.htm
    [11]
    YAO X, CHEN L, LIU M, et al. Rational design of Si/TiO2 heterojunction photocatalysts: transfer matrix method[J]. Applied Catalysis B: Environmental, 2018, 221(28): 70-76.
    [12]
    肖颖冠, 孙孝东, 李霖昱, 等.碳-氮共改性中空二氧化钛光催化剂的同步合成及其高效的光催化行为和循环稳定性研究(英文)[J].催化学报, 2019(5): 765-775. http://www.cnki.com.cn/Article/CJFDTotal-CHUA201905018.htm
    [13]
    PANTA R, RUANGPORNVISUTI V. Adsorption of hydrogen molecule on noble metal doped on oxygen-vacancy defect of anatase TiO2 (101) surface: Periodic DFT study[J]. International Journal of Hydrogen Energy, 2017, 42(30): 19106-19113. doi: 10.1016/j.ijhydene.2017.04.251
    [14]
    GAO L, LI Y, REN J, et al. Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: Realizing efficient photocatalytic overall water splitting[J]. Applied Catalysis B: Environmental, 2017, 202(9): 127-133.
    [15]
    魏龙福, 余长林.石墨烯/半导体复合光催化剂的研究进展[J].有色金属科学与工程, 2013, 4(3): 34-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201303007
    [16]
    田坚, 刘珍, 魏龙福, 等.可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J].有色金属科学与工程, 2017, 8(6): 23-35. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060005
    [17]
    陈越, 何大伟, 王永生, 等.水热法制备二氧化钛纳米管/石墨烯复合光催化剂及其光催化性能[J].发光学报, 2019, 40(2): 177-182. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201902007.htm
    [18]
    ZHANG R, ZHANG Y, WEI F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications[J]. Chemical Society Reviews, 2017, 46(12): 3661-3715. doi: 10.1039/C7CS00104E
    [19]
    张曼莹, 邬艳君, 刘姿铔, 等.纳米银修饰介孔二氧化钛及其可见光下光催化抗菌性能的研究[J].现代化工, 2018, 38(11): 77-81. http://d.old.wanfangdata.com.cn/Periodical/xdhg201811018
    [20]
    ZHANG H, LV X, LI Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2009, 4(1): 380-386. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM20041631
    [21]
    XU Y J, ZHUANG Y, FU X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange[J]. The Journal of Physical Chemistry C, 2010, 114(6): 2669-2676. doi: 10.1021/jp909855p
    [22]
    YANG L, LEUNG W F. Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells[J]. Advanced Materials, 2013, 25(12): 1792-1795. doi: 10.1002/adma.201204256
    [23]
    ZHANG Y, GUERRA NUNÑEZ C, UTKE I, et al. Understanding and controlling nucleation and growth of TiO2 deposited on multiwalled carbon nanotubes by atomic layer deposition[J]. The Journal of Physical Chemistry C, 2015, 119(6): 3379-3387. doi: 10.1021/jp511004h
    [24]
    ZOUZELKA R, KUSUMAWATI Y, REMZOVA M, et al. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation[J]. Journal of Hazardous Materials, 2016, 317(13): 52-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c35f492e4d756108951706747708378
    [25]
    薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1): 86-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201701015
    [26]
    GAO B, CHEN G Z, PUMA G L. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2009, 89(3): 503-509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1c377fd8d24d0221fa4bb1bdae07b0df
    [27]
    RASHID M, MONDAL P K, Q USMANI S, et al. Graphite oxide modified TiO2 composite: an efficient photocatalyst for degradation of methylene blue[J]. Journal of Industrial Research & Technology, 2015, 3(2): 72-78. http://hgpub.com/index_files/jirtpdf/jirt.2229-9467.2013.0302.7278.3.pdf
    [28]
    SAGADEVAN S, PAL K, KOTEESWARI P, et al. Synthesis and characterization of TiO2/graphene oxide nanocomposite[J]. Journal of Materials Science: Materials in Electronics, 2017, 9(5): 1-7. https://www.researchgate.net/publication/313356753_Synthesis_and_characterization_of_TiO2graphene_oxide_nanocomposite
    [29]
    ZHANG J, LI M, FENG Z, et al. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk[J]. The Journal of Physical Chemistry B, 2006, 110(2): 927-935. doi: 10.1021/jp0552473
    [30]
    PANG L X, ZHOU D, QI Z M, et al. Structure-property relationships of low sintering temperature scheelite-structured (1-x) BiVO4-x LaNbO4 microwave dielectric ceramics[J]. Journal of Materials Chemistry C, 2017, 5(10): 2695-2701. doi: 10.1039/C6TC05670A
    [31]
    RUI Y, XIONG H, SU B, et al. Liquid-liquid interface assisted synthesis of SnO2 nanorods with tunable length for enhanced performance in dye-sensitized solar cells[J]. Electrochimica Acta, 2017, 227(12): 49-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bb9cc94a738fc3b2ab806a27bf8d704
    [32]
    GAO Y, HU M, MI B. Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance[J]. Journal of Membrane Science, 2014, 455(18): 349-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a7ef830a847f4409820561b89f7e13f8
    [33]
    ZHANG L L, XIONG Z, ZHAO X S. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation[J]. Acs Nano, 2010, 4(11): 7030-7036. doi: 10.1021/nn102308r
    [34]
    昂源, 贺奎, 董全霄, 等.锌掺杂二氧化钛的制备及其催化降解亚甲基蓝[J].稀有金属材料与工程, 2016, 45(1): 360-364. http://www.cnki.com.cn/Article/CJFDTotal-COSE2016S1081.htm
  • Related Articles

    [1]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [2]ZHAO Kaiyan, LI Feng, YU Changlin, YANG Kai. Research progress in the fabrication and application of rare-earth single-atom photocatalysts[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 425-438. DOI: 10.13264/j.cnki.ysjskx.2023.03.016
    [3]HUANG Rui, CAI Wei, LIU Xiaoxue, WANG Zhenhua, GAO Rongli, FU Chunlin. Research progress in ferroelectric heterojunction photocatalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 49-59. DOI: 10.13264/j.cnki.ysjskx.2022.05.007
    [4]WANG Ying, YANG Chuanxi, WANG Xiaoning, ZHU Qing, DONG Wenping, YANG Cheng, LYU Haojie, WANG Weiliang, FAN Yuqi. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005
    [5]ZHANG Zhenmin1, JIA Jingwen, ZHANG Mengfan, LIU Zhen, YU Changlin, YANG Kai. Research progress of double perovskite photocatalyst materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 14-22. DOI: 10.13264/j.cnki.ysjskx.2020.04.003
    [6]LI Xiaoxiao, YANG Kai, ZENG Debin, ZHANG Kailian, YU Changlin, HUANG Weiya. Preparation of rod-like BiPO4 by microwave hydrothermal method and study on its photocatalytic properties[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 78-84. DOI: 10.13264/j.cnki.ysjskx.2019.04.013
    [7]WANG Shuhong, LIU Xin, KONG Bin, LU Jiawei, LI Hong, LIU Liequan, WANG Jinjin, CHEN Juan, HUANG Weiya. Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 68-76. DOI: 10.13264/j.cnki.ysjskx.2019.02.010
    [8]XUE Shuangshuang, HE Hongbo, WU Zhen, YU Changlin, ZHOU Wanqin. Preparation of BiOI/BiOBr hetero-structured photocatalyst by grinding-calcination route and its photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 86-93. DOI: 10.13264/j.cnki.ysjskx.2017.01.015
    [9]LI Xin, YU Chang-lin, FAN Qi-zhe, YANG Kai, CAO Fang-fang. Solvothermal preparation spherical ZnS nano-photocatalyst and its photocatalytic activity[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 21-26. DOI: 10.13264/j.cnki.ysjskx.2012.03.008
    [10]CAO Fang-fang, YU Chang-lin, YANG Kai, LI Xin. Research on the sonochemical preparation of nano-structured photocatalytic materials and its progress[J]. Nonferrous Metals Science and Engineering, 2011, 2(5): 12-17.
  • Cited by

    Periodical cited type(18)

    1. 张宇甜,牟康玮,左梦,李羽希,王福萍,梁红莲. 芦苇-碳纳米管掺杂二氧化钛复合材料对甲醛溶液的处理. 山西化工. 2024(08): 1-4+8 .
    2. 王书红,陈步东,曹飞飞,吴启军,钱纯波,徐飞星,李中平. TiO_2/CuS复合材料的制备及其光催化降解污染废水的性能研究. 有色金属科学与工程. 2024(06): 877-889 . 本站查看
    3. 王蕾,宋欣怡,童海健,霍宇凝. 光还原法制备花状Bi/CuS可见光催化剂及其性能研究. 稀有金属. 2023(01): 177-185 .
    4. 霍彦廷,舒庆. 双Z型异质结BiOI/MoO_3/g-C_3N_4的构建及其光催化性能研究. 有色金属科学与工程. 2023(01): 74-85 . 本站查看
    5. 赵凯燕,李锋,余长林,杨凯. 稀土单原子光催化剂制备和应用研究进展. 有色金属科学与工程. 2023(03): 425-438 . 本站查看
    6. 张犇,张瑞峰,杨川云,杨世莲. 锰镁氢氧化物碳基复合材料催化臭氧化降解亚甲基蓝. 功能材料. 2023(09): 9123-9132 .
    7. 石伟和,贾陈忠,陆必旺,马志鸿. 催化剂掺杂对MgH_2储氢性能的改进研究. 稀有金属. 2022(01): 87-95 .
    8. 黄征,黄菲,田建军. CuInSe_2量子点的制备及光电应用研究进展. 稀有金属. 2022(06): 695-706 .
    9. 王爽,谢良波,李轶,尚登辉,郑雯雯,展思辉. 芬顿催化剂的活性氧物种生成机制及其在环境治理中的应用. 稀有金属. 2022(06): 707-723 .
    10. 车乃菊,李银辉,杨帆,刘国平,张增利,李成亮. CuO/MWCNTs复合材料降解双酚A的光催化性能. 农业环境科学学报. 2022(08): 1800-1807 .
    11. 张川群,周勤,徐冲,刘新,谭颖,黄微雅. Bi_2MoO_6的形貌调控及其应用研究进展. 有色金属科学与工程. 2021(02): 56-65 . 本站查看
    12. 任壮禾,张欣,高明霞,潘洪革,刘永锋. Ti基催化剂改性的NaAlH_4储氢材料研究进展. 稀有金属. 2021(05): 569-582 .
    13. 冯亚杰,段有雨,邹函君,马江平,周楷,周小元. 单原子催化剂在光催化分解水制氢中的研究现状. 稀有金属. 2021(05): 551-568 .
    14. 胡京宇,姚戎,潘玉航,朱超,宋爽,沈意. 可光助再生二氧化钛/层状双氢氧化物去除水体中有机染料. 化工学报. 2020(07): 3296-3303 .
    15. 龚之宝,韩迈,孙伟振,马占华,李青松. 以硫酸氧钛为钛源制备二氧化钛粒子. 应用化工. 2020(06): 1473-1476 .
    16. 张健伟,苑鹏,王建桥,沈伯雄,张艳芳. Ce掺杂的CNTs-TiO_2光催化剂制备及其NO氧化性能. 环境工程学报. 2020(07): 1852-1861 .
    17. 张柯,王海旺,刘可凡,黄谦,傅渭杰,王柄筑. 碳基材料复合半导体光催化剂的制备及应用研究进展. 炭素. 2020(01): 23-35 .
    18. 孙嘉敏,张彧涵,陈学濡,贺彬烜,蒋恩臣,简秀梅. 负载方式和负载体对TiO_2性能影响的研究进展. 广州化工. 2020(22): 4-9 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (111) PDF downloads (3) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return