Citation: | ZHOU Miaomiao, LI Tingting, HUANG Jili, GUO Qiankun, ZHONG Shengwen. Study on preparation and modification of P2-type manganic sodium ion anode battery[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 61-66. DOI: 10.13264/j.cnki.ysjskx.2019.05.010 |
[1] |
胡杨, 李艳, 钟盛文, 等18650型锂离子电池的安全性能研究[J].电池, 2006, 36(3):192-194. doi: 10.3969/j.issn.1001-1579.2006.03.011
|
[2] |
KANG S H, AMINE K. Synthesis and electrochemical properties of layer-structured 0.5Li(Ni0.5Mn0.5)O2-0.5Li(Li1/3Mn2/3)O2 solid mixture[J]. Journal of Power Sources, 2003, 124(2):533-537. doi: 10.1016/S0378-7753(03)00804-8
|
[3] |
邱世涛, 钟盛文, 李婷婷, 等. Cu掺杂LiNi0.6Co0.2Mn0.2O2的电化学性能[J].有色金属科学与工程, 2018, 9(5):21-25. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201807011
|
[4] |
SLLLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8):947-958. doi: 10.1002/adfm.201200691
|
[5] |
ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Cheminform, 2014, 44(46): 168-177. http://d.old.wanfangdata.com.cn/Periodical/gncl201513001
|
[6] |
KIM S, SEO D, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7):710-721. doi: 10.1002/aenm.201200026
|
[7] |
YAMADA, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. Cheminform, 2010, 32(29):17-17. http://cn.bing.com/academic/profile?id=663d2173c29ec04a5adef18fd9719857&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
LEE D H, XU J, MENG Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability [J]. Physical Chemistry Chemical Physics Pccp, 2013, 15(9):3304-3312. doi: 10.1039/c2cp44467d
|
[9] |
ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1):13-24. doi: 10.1016/j.jpowsour.2010.07.020
|
[10] |
GONG Z L, LIU H S, GUO X J, et al. Effects of preparation methods of LiN0.8Co0.2O2 cathode materials on their morphology and electrochemical performance[J]. Journal of Power Sources, 2004, 136(1):139-144. doi: 10.1016/j.jpowsour.2004.05.022
|
[11] |
CAOM H, WANG Y, SHADIKE Z, et al. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(11):5442-5448. doi: 10.1039/C6TA10818K
|
[12] |
AUGUSTINE S M, CHERIAN A V, SYAMALADEVI D P, et al. Erianthus arundinaceus HSP70 (EaHSP70) acts as a key regulator in theformation of anisotropic interdigitation in sugarcane (Saccharum spp. hybrid) in response to drought stress[J]. Plant & Cell Physiology, 2015, 56(12):2368-2380.
|
[13] |
ZHONG S W, ZHAO Y J, LIAN F, et al. Characteristics and electrochemical performance of cthode material Co-coated LiNiO2 for Li-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(1):137-141. doi: 10.1016/S1003-6326(06)60024-1
|
[14] |
SANG H P, PARK K S, CHO M H, et al. The effects of oxygen flow rate and anion doping on the performance of the LiNiO2 electrode for lithium secondary batteries[J]. Korean Journal of Chemical Engineering, 2002, 19(5):791-796. doi: 10.1007/BF02706969
|
[15] |
KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54 (11):3431-3448. doi: 10.1002/anie.201410376
|
[16] |
RUDOLA A, SARAVANAN K, MASON C W, et al. Na2Ti3O7: An intercalation based anode for sodium-ion battery applications[J]. Journal of Materials Chemistry A, 2013, 1(7):2653-2662. doi: 10.1039/c2ta01057g
|
[17] |
FISHER C A J, PRIETO V M H, ISLAM M S. Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior[J]. Chemistry of Materials, 2008, 20(18):5907-5915. doi: 10.1021/cm801262x
|
[18] |
吴振军, 陈宗璋, 汤宏伟, 等.钠离子电池研究进展[J].电池, 2002, 32(1):45-47. doi: 10.3969/j.issn.1001-1579.2002.01.018
|
[19] |
丁燕怀, 苏光耀, 高德淑.溶胶-凝胶法合成正极材料LiFePO4[J].电池, 2006, 36(1):52-53. doi: 10.3969/j.issn.1001-1579.2006.01.019
|
[1] | LU Jianhong, YU Liusi, FAN Jinlong, MENG Junchen, CHEN Lifen, WU Guangwei. Deposition kinetics analysis of electroless copper using the EDTA/THPED dual-ligand system[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 42-49. DOI: 10.13264/j.cnki.ysjskx.2022.06.006 |
[2] | XU Jiacong, YU Xiaoqiang, GONG Ao, WU Xuangao, CAO Caifang, LIU Mudan, CHEN Zhiqiang, TIAN Lei, XU Zhifeng, LIU Yong. Kinetic of carbothermal reduction of zinc, tin and lead from electroplating sludge[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 52-58. DOI: 10.13264/j.cnki.ysjskx.2020.05.008 |
[3] | ZHANG Hao, WANG Guang, ZHANG Shihan, WANG Jingsong, XUE Qingguo. Direct reduction kinetics of copper slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2019.01.005 |
[4] | SONG Hanlin, JIANG Pingguo, LIU Wenjie, WANG Zhengbing. Research progress on hydrogen reduction kinetics of tungsten oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 64-69. DOI: 10.13264/j.cnki.ysjskx.2017.05.009 |
[5] | TANG Weidong, ZHU Weiwei, JIANG Pingguo, JING Qingxiu. Kinetics of chlorination process of copper oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2017.01.008 |
[6] | XIA Qing, YUE Tao. The research progress of flotation kinetics[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 46-51. DOI: 10.13264/j.cnki.ysjskx.2012.02.010 |
[7] | NIE Jin-xia, HEN Yun-ren, CHEN Ming CHEN Ming. Thermodynamics and Kinetics of Copper Sorption by Rice Bran[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 35-38. |
[8] | ZHAO Zhong-wei, JIA Xi-jun, CHEN Ai-liang, LONG Shuang, HUO Guang-sheng, LI Hong-gui. Leaching Silicon Kinetics of Zinc Oxide Ore Leached with Alkali[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 31-34. |
[9] | ZU Yan, SU Wen-ming. Thinkings of Strengthening the Inside Account Control[J]. Nonferrous Metals Science and Engineering, 2005, 19(1): 5-7,22. |
[10] | ZHANG Tian, ZHAO Shu-Hing. Application of Fuzzy Intelligent Controller to Cone Crusher[J]. Nonferrous Metals Science and Engineering, 2004, 18(4): 42-43. |
1. |
冯秀娟,王小青,张书荣,董成亮. 离子吸附型稀土原地浸矿颗粒运移与孔隙结构演变及模型构建研究现状及展望. 稀土. 2025(02): 114-127 .
![]() | |
2. |
王梦园,黄诗云,刘红昌,刘洋,李京娜,聂珍媛,夏金兰,王军. 黄色黏球菌/铜绿假单胞菌-离子型稀土矿相互作用比较研究. 生物学杂志. 2024(03): 11-20+45 .
![]() | |
3. |
蔡万青,周丹,秦磊,赵永红. 硫酸镁在离子型稀土中的吸附规律及形态分布研究. 有色金属科学与工程. 2024(06): 941-951 .
![]() | |
4. |
程玥淞,黄玲玲,郭敏,汪实,王钧,宫清华,袁少雄. 注压对离子型稀土浸出及孔隙结构的影响. 有色金属工程. 2023(12): 51-58 .
![]() |