闵定伟, 陈功, 文棠根, 石忠宁, 黄义鹏, 杨少华. NaCl-KCl-MgCl2-Cu2S熔体中铜电沉积的电化学机理[J]. 有色金属科学与工程, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004
引用本文: 闵定伟, 陈功, 文棠根, 石忠宁, 黄义鹏, 杨少华. NaCl-KCl-MgCl2-Cu2S熔体中铜电沉积的电化学机理[J]. 有色金属科学与工程, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004
MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004
Citation: MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004

NaCl-KCl-MgCl2-Cu2S熔体中铜电沉积的电化学机理

Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts

  • 摘要: 面对能源与环境危机的挑战,绿色冶金技术成为业内关注的焦点。以硫化铜矿为原料的火法炼铜过程产生大量的有害气体SO2,需要消耗额外的能源进行转化。相比之下,采用熔盐电解法直接将铜硫化物电分解为金属铜和单质硫,电解过程对环境友好。对700 ℃下NaCl-KCl-MgCl2-Cu2S熔盐体系中电沉积铜的阴极电化学过程进行研究。结果表明,Cu+通过一步单电子转移电化学反应生成Cu,电极过程由扩散传质控制,扩散系数为1.23×10-5 cm2/s;Cu电沉积的成核生长为扩散控制的三维瞬时成核生长机理,形核成长为几十纳米至数微米大小的不规则颗粒微结构。

     

    Abstract: With the challenge of energy and environmental crisis, green metallurgy technology has become the focus of attention in the industry. The pyrometallurgical process of copper smelting using copper sulfide ore as raw material produces a large amount of harmful gas SO2, which requires additional energy for conversion. In contrast, the direct electrolysis of copper sulfide into metallic copper and elemental sulfur by molten salt electrolysis is environmentally friendly. In the present work, the cathodic electrochemical process of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melt at 700 ℃ was investigated. The results showed that Cu+ was reduced to Cu through a one-step electron transfer with a diffusion coefficient of 1.23×10-5 cm2/s; the nucleation growth of Cu electrodeposition was a diffusion-controlled three-dimensional instantaneous nucleation mechanism, and the nucleation grew into an irregular particle microstructure with a size of tens of nanometers to several micrometers.

     

/

返回文章
返回