创刊于1987年, 双月刊
主管:

江西理工大学

主办:

江西理工大学
江西省有色金属学会

ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9

高强韧铝合金非等温时效工艺的研究进展

贺嘉宁, 贾咏馨, 于帅, 苏睿明, 聂赛男

贺嘉宁, 贾咏馨, 于帅, 苏睿明, 聂赛男. 高强韧铝合金非等温时效工艺的研究进展[J]. 有色金属科学与工程, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004
引用本文: 贺嘉宁, 贾咏馨, 于帅, 苏睿明, 聂赛男. 高强韧铝合金非等温时效工艺的研究进展[J]. 有色金属科学与工程, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004
HE Jianing, JIA Yongxin, YU Shuai, SU Ruiming, NIE Sainan. Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004
Citation: HE Jianing, JIA Yongxin, YU Shuai, SU Ruiming, NIE Sainan. Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004

高强韧铝合金非等温时效工艺的研究进展

基金项目: 

国家自然科学基金资助项目 51574167

辽宁省自然科学基金资助项目 2021-MS-235

辽宁省教育厅科学研究项目 LJGD2020010

大学生创新创业训练计划项目 

详细信息
    通讯作者:

    苏睿明(1984—),男,博士,副教授,博士生导师,主要研究方向为铝合金的制备与强韧化处理。E-mail:suruiming1984@163.com

  • 中图分类号: TG146.2

Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness

  • 摘要: 非等温时效工艺作为一种新兴的时效处理方法,能够有效地提高高强韧铝合金的综合性能。通过简要归纳近些年来应用于高强韧铝合金的非等温时效工艺,总结出经不同非等温时效处理后高强韧铝合金析出相的特征、合金力学性能和腐蚀性能的变化情况。非等温时效工艺的效率相较于传统时效工艺有很大提高,并且能够同时调控高强韧铝合金内基体析出相和晶界析出相的种类、尺寸和分布情况,使高强韧铝合金兼具与T6峰值时效态相差不多的力学性能和近T7x过时效态的腐蚀性能。最后,对未来高强韧铝合金非等温时效工艺的研究和应用进行了展望。
    Abstract: As a new aging treatment method, the nonisothermal aging process can effectively improve the comprehensive properties of aluminum alloys with high strength and toughness. The cases of nonisothermal aging process applied to aluminum alloys with high strength and toughness in recent years were briefly studied to summarize the characteristics of precipitates and the changes in mechanical properties and corrosion properties of aluminum alloy with high strength and toughness after different nonisothermal aging treatments. It is found that compared with the traditional aging process the efficiency of the nonisothermal aging process has been greatly improved. In addition, moreover, the types, sizes and distributions of matrix precipitates and grain boundary precipitates of aluminum alloy with high strength and toughness can be simultaneously controlled by a nonisothermal aging process so that aluminum alloy with high strength and toughness has mechanical properties similar to the T6 peak aging state and corrosion properties close to the T7x overaging state. Finally, future research and applications of nonisothermal aging processes for aluminum alloys with high strength and toughness are proposed.
  • 风硐是指矿井深处废气由风井排至地表再通过风机将废气排入大气中的一段通风巷道[1].而直风硐为风硐的前段部分,为使风硐内流场趋于稳定均匀以及满足风机工况测定需要,因此要求风速分布稳定,且其长度要求不小于10D1(主风机动轮直径)[2],但具体取值没有明确规定.风流由风井流入直风硐,往往要通过一个直角转弯[3],由于转弯处局部阻力大,会造成较大能量损失;此外,风流经过转弯时,其风速分布会发生急剧变化,在离心力的作用下,流体质点会偏移至外转角且风速高度集中[4].随着风流不断向前流动,逐渐恢复均匀,风流会最终达到类似管流的稳定,其速度分布具有湍流稳定后所具有的典型半弧曲线[5],如图 1C-C'所示.

    图  1  风流转弯后速度分布示意图
    Figure  1.  The airflow's velocity distribution after turning

    风流经转弯后其风速分布会发生急剧变化,因此可将转弯处看作是一个流动断面的收缩,如图 1A-A'断面所示.从A-A'流动收缩断面至C-C'速度稳定断面上,整个流动区间可分为两个具有各自流动特征的区域.第一个是A'B'O'O流动区域,即从风硐中心轴线到转角后的内边壁,这是一个属于紊动射流区域,在靠近内转角边壁的位置会产生涡流区,形成反向风流,影响风流的前进.第二个流动区域是由风硐轴线与转角后的外边壁所组成的ABCO''O'O区域,这是一个属于管流附面层流动的区域.

    在紊动射流A'B'O'O区域内,当风流流动至B-B'断面时,虽然在该断面涡流现象已消失,但该处风速分布仍不稳定,呈现出靠近外边壁风速高,内边壁风速底的上高下底现象,因而不能将该处看作是风流分布稳定的地方.因此,风流的稳定段长度不应由转弯后内边壁下方涡流区消失的长度决定,而是取决于上方管流附面层流动区域内的风速分布稳定段长度,即该长度就是整个流动系统的风速分布稳定段长度.

    风流通过直角转弯后流入直风硐,在最小收缩断面上,从中心轴线至风硐的外边壁由于风速集中,可近似的认为该处速度为等速均匀分布.随着风流的向前发展,靠近壁面的风流速度会因为受到边壁摩擦阻力而形成附面层,且附面层厚度会随着风流向前发展而不断增加.当附面层厚度δ增大至风硐半径时,就可认为风硐断面四周的附面层均已衔接,即附面层充满整个断面,风流完成充分发展[6].

    根据附面层动量积分方程式[7]

    $$ \frac{{\rm{d}}}{{{\rm{d}}x}}\int\limits_0^\delta {V_x^2{\rm{d}}y-{V_0}\frac{{\rm{d}}}{{{\rm{d}}x}}} \int\limits_0^\delta {{V_x}{\rm{d}}y =-\frac{{{\tau _0}}}{\rho }} $$ (1)

    式(1)中,Vx为截面上任一位置处的纵向风速;V0为中心轴线上最大风速;τ0为壁面对风流的剪切应力;δ为附面层厚度.

    在雷诺数大于105和粗糙度较大的矿山风硐中,求解式(1)方程,需补充以下三个方程[8].

    1)风速分布方程式:

    $$ {V_x} = V\left( {1-6.5\sqrt {\rm{\alpha }} + 9.8\sqrt {\rm{\alpha }} \sqrt {1-{{\left( {\frac{r}{{{r_0}}}} \right)}^2}} } \right) $$ (2)

    2)轴线最大风速V0和断面平均风速V关系:

    $$ {V_0} = V\left( {1 + 3.3\sqrt {\rm{\alpha }} } \right)V $$ (3)

    3)在高雷诺数下,边壁的剪切应力τ0为:

    $$ {\tau _0} = {\rm{\alpha }}{V^2}/10 $$ (4)

    式(2)、(3)、(4)中,V为断面的平均风速;α为摩擦阻力系数;r为断面上任一点距中心轴线的距离;r0为边壁距中心轴线的距离.

    将式(2)、(3)、(4)带入式(1),其中r0对应附面层厚度δr对应(δ-y),当转弯后的风流完成稳定,有δ=D/2,对式(1)进行积分计算并整理可得:

    $$ \frac{{{X_0}}}{D} = \frac{{1.26}}{{\sqrt {\rm{\alpha }} }} =-1.6 $$ (5)

    式(5)中,X0为风流转弯后风速分布稳定段长度;D为风硐当量直径.

    本文根据某矿山风硐实际情况,为便于分析,选取方形风硐作为本次模拟对象,其中风井与风硐断面相同,均为为2.7 m×2.7 m,且二者长度都为45 m,如图 2所示.

    图  2  风流由风井进入风硐几何模型
    Figure  2.  The geometric model of fan air chamber

    风硐内风流为三维、粘性、非定常可压缩的湍流流动.为便于分析,需对风硐内风流引入如下假设[9]:①风流为不可压缩流动,不考虑由流体粘性力做功而产生的耗散热;②壁面密闭好;③忽略围岩热辐射的影响;④流动为稳态紊流,满足Boussinesq假设[10].基于以上假设,可用以下数学模型对风硐内风流进行描述[11].

    1)质量守恒方程

    $$ \frac{{\partial \rho }}{{\partial t}} + \nabla \cdot \left( {pVV} \right) = {S_m} $$ (6)

    式(6)中,ρ为流体密度;V为速度矢量;Sm为加入到连续相质量.

    2)动量守恒方程

    $$ \frac{{\partial \left( {\rho V} \right)}}{{\partial t}} + \nabla \cdot \left( {pVV} \right) =-\nabla \rho + \nabla \cdot \left( \tau \right) + \rho g + F $$ (7)

    式(7)中,p为作用在微元体上的压力;τ为作用在微元体表面上的黏性应力张量;g为作用在微元体的重力体积力;F为作用在微元体的其它外部体积力.

    3)能量守恒方程

    $$ \begin{array}{l} \frac{{\partial \left( {\rho V} \right)}}{{\partial t}} + \nabla \cdot \left( {V\left( {\rho E + p} \right)} \right) = \\ \;\;\;\;\nabla \cdot \left[{{k_{eff}}\nabla T-\sum\limits_j {{h_j}{J_j} + \left( {{\tau _{eff}} \cdot V} \right)} } \right] + {S_h} \end{array} $$ (8)

    式(8)中,E为流体微团的总能;keff为有效导热系数;hj为组分j的焓;Jj为组分j的扩散通量;Sh为化学反应引起的热交换.

    利用GAMBIT对几何模型进行网格划分,依据实际情况,设定材料属性、操作条件等参数,定义入口边界条件为速度入口,出口边界条件为自由出口,风硐四周边壁等边界设置成wall,中间区域设置成air.完成设定后,进行迭代计算,并得到流场变化的数据及图像.

    影响风流转弯后风速分布稳定段长度的主要因素为风硐当量直径、摩擦阻力系数以及雷诺数[4].研究表面,当Re>105时,雷诺数对风流稳定段长度的影响可忽略不计[12].经计算,模拟风硐内的风流雷诺数为2.16×106,因此本文主要考虑风硐当量直径D及摩擦阻力系数α对风流稳定段长度的影响.

    1)摩擦阻力系数α对风流稳定段长度影响当Re>106时,α将不再取决于雷诺斯Re,而是仅仅取决于风硐壁面的粗糙度k,且αk间的数学关系式为[13]

    $$ \alpha = \frac{{0.15}}{{\left( {1.74 + 21g\frac{{2S}}{{Ck}}} \right)}} $$ (9)

    式(9)中,S为风硐断面积;C为风硐周长.

    根据式(9),对模型进行边界条件设定,如表 1所示.

    表  1  边界条件参数设置
    Table  1.  The parameters settings of boundary condition
    入口风速
    /(m·s-1)
    水力
    直径/m
    湍流
    强度/%
    粗糙度
    常/m
    摩擦阻力系
    数/(N·s2·m4)
    10 2.7 2.6 0.003~0.450 2.90×10-3~2.06×10-2
    下载: 导出CSV 
    | 显示表格

    当粗糙度取0.045时,摩擦阻力系数为68×10-3时,比较接近矿山风硐实际[14].其流场分布如图 3图 4所示.

    图  3  直风硐流场分布图
    Figure  3.  Flow field distribution of straight fan chamber
    图  4  直角转弯处流场分布图
    Figure  4.  Flow field distribution of right angle turning

    在模型中沿风流向前方向每隔5 m设置速度检测点,监控风流在不同直风硐长度下的断面中心纵向及横向风速分布,如图 5图 6图 7所示.

    图  5  不同风硐长度下的断面纵向风速分布
    Figure  5.  Lengthways velocity distribution under different length of the fan air chamber
    图  6  不同风硐长度下的断面横向风速分布
    Figure  6.  Lateral velocity distribution under different length of the fan air chamber
    图  7  直风硐长30m时的断面速度云图
    Figure  7.  Speed to cloud of section when straight fan chamber 30 m long

    图 3图 7可知:①风流经过直角转弯时风速发生急剧变化,在转弯两侧产生涡流区;②风流在外边壁高度集中,在内转角边壁形成涡流区;③随着风流向前发展,外边壁集中风流逐渐向内边壁发展,风流趋于均匀,并达到最终稳定;④经过30 m左右长度时,风速在断面的纵向和横向都基本完成稳定,具有紊流稳定后的典型半弧外形曲线,可知当风硐摩擦阻力系数为68×10-3时,其风流分布稳定段长度为30 m.

    由于本文模拟图形较多,故不一一罗列.现将摩擦阻力系数为29×10-3~206×10-2与其所对应的风流稳定段长度进行整理,如表 2所示.

    表  2  不同摩擦阻力系数的风流稳定段长度
    Table  2.  The airflow's stable length under different coefficient of frictional resistance
    粗糙度
    常数k/m
    摩擦阻力
    系数α/(N·s2/m4)
    稳定段
    长度X0/m
    X0/D(稳定段长
    度/风硐当量直径)
    0.0029 2.90×10-3 39.0 14.4
    0.008 3.90×10-3 35.5 13.1
    0.045 6.80×10-3 30.0 11.1
    0.064 7.80×10-3 29.0 10.7
    0.170 1.17×10-2 27.0 10.0
    0.250 1.47×10-2 25.0 9.3
    0.450 2.06×10-2 23.0 8.5
    下载: 导出CSV 
    | 显示表格

    将上述散点以$1\sqrt \alpha $为横坐标,X0/D为纵坐标绘制成曲线图,如图 8所示,并拟合出风流经直角转弯后风速分布稳定段长度的模拟方程为:${X_0} = \left( {0.49/\sqrt \alpha + 5.17} \right)D$.

    图  8  理论曲线、实验曲线以及模拟曲线对比图
    Figure  8.  Simulation curve, theoretical curve and experiment curvet comparison figure

    2)风硐当量直径D对风流稳定段长度影响将风硐断面改为2 m×2 m进行重新模拟,以分析当量直径的变化对风流稳定段长度的影响.选取分别为68×10-3、78×10-3及117×10-2三个接近风硐实际的参数进行模拟,假定风流入口风速等基本参数不变.模拟结果如表 3所示.

    表  3  改变风硐当量直径的风流稳定段长度
    Table  3.  The airflow's stable length when change fan air chamber's equivalent diameter
    α/(N·s2·m-4) X0/m X0/D 拟合公式的X0/D 相对误差/%
    6.80×10-3 22.6 11.3 11.1 1.8
    7.80×10-3 21.8 10.9 10.7 1.9
    1.17×10-3 19.8 10.0 9.7 3.1
    下载: 导出CSV 
    | 显示表格

    表 3可知,当改变风硐的当量直径时,其风流经直角转弯后的风速分布稳定段长度仍适用于上述根据模拟结果所拟合出的方程,显示出该方程式具有较好的适用性以及正确性.

    上世纪80年代初有学者针对风流经直角转弯后风速分布稳定段长度做过一组1:20的方形铁皮巷道实验,具体数据如表 4所示[12].

    表  4  采用1:20方形铁皮巷道实验值
    Table  4.  The experimental value of roadway under 1:20
    当量直径D/m 摩擦阻力系数α/(N·s2/m-4) 稳定段长度X0/m
    2.00×10-1 4.40×10-3 12D
    1.92×10-1 1.22×10-2 9D
    1.84×10-1 1.64×10-2 9D
    1.76×10-1 1.96×10-2 8D
    1.70×10-1 2.35×10-2 8D
    下载: 导出CSV 
    | 显示表格

    根据附面层理论在风流经直角转弯后风速分布稳定段长度的应用可知,风流经转弯后所需的稳定段长度为${X_0} = \left( {1.26/\sqrt \alpha-1.6} \right)D$.

    现将表 2表 4中的摩擦阻力系数α与稳定段长度X0的对应关系,以$1/\sqrt \alpha $为横坐标,X0/D为纵坐标绘制成散点曲线图,并将其与理论方程进行对比,如图 8所示.

    图 8可知:①风流经直角转弯后风速分布稳定段长度X0与摩擦阻力系数成反比关系;②实验曲线与模拟曲线十分接近,误差在5%以内,说明所选用的数值模拟方法是可靠、正确的;③当$1/\sqrt \alpha $较小,即α较大(大于60×10-3)时,理论研究、实验分析及数值模拟都显示出良好的适用性及准确性;④当α较小时,实验和模拟的方法与理论分析都存在一定偏差,但二者却较为相似,说明了由数值模拟重新拟合的方程式具有一定的准确性及适用性.

    通过上述理论分析、实验研究和数值模拟结果,对于风流由风井经直角转弯后流入直风硐的风速分布稳定段长度可作出如下总结:

    1)、对于用混凝土、混凝土砖以及砖、石砌碹,外抹灰浆的风硐,α介于(2.9~3.9)×10-3,转弯后的风速分布稳定段长度宜取(13~14)D.

    2)、对于在岩巷里开掘且不进行支护的风硐,α在(6.8~7.8)×10-3之间,转弯后的风速分布稳定段长度宜取11D.

    3)、对于采用金属横梁或帮柱混合支护的风硐,α介于(7.8~1.17)×10-3,转弯后的风速分布稳定段长度宜取9~11D.

    4)、对于采用金属支架的风硐,α介于(1.47~2.06)×10-3,转弯后的风速分布稳定段长度宜取8~9D.

    风井的风流往往会通过直角转弯进入直风硐,但直角转弯处局部阻力大,造成较大的能量损失[15],对风流转弯后风速分布稳定段长度也有着较大的影响.影响转弯处局部阻力系数的主要因素为[16]:转弯角度、转角的形状以及壁面粗糙度.由于对转弯角的形状进行改造相比另外两个因素会更加简单且经济实惠[17],目前矿山针对直角转弯的改造主要是采取以下两种措施[18]:①将内外直角刷成圆弧形;②在转弯处安设导流叶片.

    根据上述两种改造方案,对几何模型进行修改,将风井与风硐间的内外直角设置成圆弧,圆弧半径等于风硐直径,即R=D=2.7 m,并通过断面尺寸计算在转弯处设置三块薄导流叶片[19].

    假定风硐模型的基本参数设置不变,断面仍采用2.7 m×2.7 m,α取(6.8×10-3).通过以上两种改造措施后,风硐内流场分布以及风速分布曲线如图 9图 11所示.

    图  9  改造后转角处流场分布图
    Figure  9.  Flow field distribution in turning after transforming
    图  10  改造后不同风硐长度下的断面纵向风速分布图
    Figure  10.  Lengthways velocity distribution under different length of chamber after transforming
    图  11  改造后不同风硐长度下的断面横向风速分布图
    Figure  11.  Lateral velocity distribution under different length of chamber after transforming

    图 9图 11可知:①通过对直角转弯部进行改造后,转弯两侧不再存在涡流区,极大的降低其局部阻力. ②改造后的风流经过转弯后风速分布相对较平稳,不再发生急剧变化,且中心轴线风速相比于四周较高,这样有利于风速分布的快速稳定. ③风流在直风硐长16 m的位置处已基本完成稳定,长度为6D左右,相比改造前所需的30 m,节省了约14 m的直风硐长度.

    通过对风流经转弯后进入直风硐的流场进行模拟分析,得出了风流经转弯后的稳定段长度主要与壁面摩擦系数及风硐当量直径有关;总结出直风硐在不同摩擦阻力系数下,其风流稳定段长度的具体取值范围.结合理论分析、实验研究的结果,说明了本文所拟合的风流经转弯后稳定段长度方程式具有较好的适用性和准确性.并根据矿山实际,对直角转弯处进行优化改造,并对改造后的效果进行分析,可知将内外直角刷成圆弧和安设导流叶片后,其局部阻力能有效降低,且风流所需的稳定段长度亦大大缩短,节省了直风硐的长度,间接为矿山企业创造了经济效益.

  • 图  1   7055铝合金非等温单级时效(升温)工艺示意[10]

    Fig  1.   Diagram of the nonisothermal aging process of 7055 aluminum alloy[10]

    图  2   7050铝合金非等温单级时效(降温)工艺示意[11]

    Fig  2.   Diagram of the nonisothermal aging process of 7050 aluminum alloy[11]

    图  3   7050铝合金非等温单级时效(升温和降温)工艺示意[12]

    Fig  3.   Diagram of the nonisothermal aging process of 7050 aluminum alloy[12]

    图  4   7055铝合金非等温双级时效工艺示意[13]

    Fig  4.   Diagram of the nonisothermal aging process of 7055 aluminum alloy[13]

    图  5   7050铝合金非等温多级时效工艺示意[15]

    Fig  5.   Diagram of the nonisothermal aging process of 7050 aluminum alloy[15]

    图  6   7055铝合金非等温多级时效工艺示意[16]

    Fig  6.   Diagram of the nonisothermal aging process of 7055 aluminum alloy[16]

  • [1] 李念奎. 铝合金材料及其热处理技术[M]. 北京: 冶金工业出版社, 2012.
    [2] 张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(1): 39-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301006.htm
    [3] 李贝贝, 王元清, 支新航, 等. 我国7xxx系高强铝合金及其研究进展[J]. 建筑钢结构进展, 2021, 23(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ202107001.htm
    [4] 石峰, 张智超, 王旭. 7xxx系列铝合金时效处理工艺的研究[J]. 热加工工艺, 2017, 46(2): 6-10. doi: 10.14158/j.cnki.1001-3814.2017.02.002
    [5] 刘向丽. 双级时效对Al-Zn-Mg-Cu合金组织与性能的影响[J]. 热加工工艺, 2021, 50(8): 127-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202108032.htm
    [6] 王艳娟, 胡晓青, 曲庆文, 等. RRA处理对7085铝合金微观组织演变及性能的影响[J]. 金属热处理, 2019, 44(8): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201908012.htm
    [7] 王井井, 黄元春, 刘宇, 等. 时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J]. 有色金属科学与工程, 2018, 9(2): 47-55. doi: 10.13264/j.cnki.ysjskx.2018.02.009
    [8] 王胜玉, 肖柱, 王正安, 等. 工业化制备7050铝合金厚板显微组织与力学性能[J]. 有色金属科学与工程, 2017, 8(3): 48-53. doi: 10.13264/j.cnki.ysjskx.2017.03.008
    [9]

    STALEY J T. Method and process of non-isothermal aging for aluminum alloys: US, 0267113Al[P]. 2007-11-22.

    [10] 向剑波, 陈伟, 熊落保, 等. 7055铝合金的非等温时效工艺[J]. 金属热处理, 2019, 44(1): 190-194. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201901050.htm
    [11] 陈庚, 苗景国, 方琴, 等. 非等温时效工艺对7050铝合金组织和性能的影响[J]. 金属热处理, 2020, 45(3): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202003039.htm
    [12]

    PENG X Y, GUO Q, LIANG X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2017, 688: 146-154. doi: 10.1016/j.msea.2017.01.086

    [13] 李吉臣, 冯迪, 夏卫生, 等. 7055铝合金的非等温双级时效行为[J]. 金属学报, 2020, 56(11): 1495-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202011006.htm
    [14] 蒋爱娟, 祝贞凤, 梁晓宁, 等. 回归温度对7150铝合金组织和性能的影响[J]. 金属热处理, 2019, 44(9): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201909034.htm
    [15] 吴懿萍, 何臻毅, 周志纲, 等. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(增刊2): 394-397. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2019S2079.htm
    [16] 冯迪, 张新明, 邓运来, 等. 预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201405005.htm
    [17]

    MARCEAU R K W, SHA G, LUMLEY R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Materialia, 2010, 58: 1795-1805.

    [18]

    DU Z W, SUN Z M, SHAO B L, et al. Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal aging[J]. Materials Characterization, 2006, 56(2): 121-128.

    [19]

    MARLAUD T, DESCHAMPS A, BLEY F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2010, 58(14): 4814-4826.

    [20] 余罡, 向剑波, 赵忠新, 等. 非等温时效对7003铝合金组织和性能的影响[J]. 金属热处理, 2020, 45(2): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202002031.htm
    [21] 张雪. 7050铝合金非等温时效过程组织演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [22] 冯迪, 张新明, 陈洪美, 等. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201801012.htm
    [23] 刘炎. 7000系铝合金的非等温时效行为及其对力学性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [24]

    JIANG J T, TANG Q J, YANG L, et al. Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties[J]. Journal of Materials Processing Technology, 2016, 227: 110-116.

    [25] 唐秋菊. 7A85铝合金降温时效工艺的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [26] 詹鑫, 李慧中, 粱霄鹏, 等. 非等温时效对2A14铝合金晶间腐蚀和力学性能的影响[J]. 矿冶工程, 2018, 38(6): 139-142. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201806036.htm
    [27]

    LI Y, XU G F, PENG X Y, et al. Effect of non-isothermal aging on microstructure and properties of Al-5.87Zn-2.07Mg-2.42Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2021(10): 1-10.

    [28]

    MOGHANAKI S K, KAZEMINEZHAD M. Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed 2024 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 1-9.

    [29]

    LIU Y, LIANG S, JIANG D. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2016, 689: 632-640.

    [30]

    LIU Y, JIANG D, LI B, et al. Heating aging behavior of Al-8.35Zn-2.5Mg-2.25Cu alloy[J]. Materials and Design, 2014, 60(8): 116-124.

    [31]

    LIU Y, JIANG D, LI B, et al. Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2014, 57(5): 79-86.

    [32] 冯迪, 张新明, 刘胜胆, 等. 预时效温度及回归加热速率对7150铝合金显微组织及性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305000.htm
    [33] 王国迎. 非等温回归及再时效对7055铝合金组织和性能的影响[D]. 镇江: 江苏科技大学, 2018.
    [34]

    STARINK M J, LI X M. A model for the electrical conductivity of peak-aged and overaged Al-Zn-Mg-Cu alloys[J]. Metallurgical and Materials Transactions A, 2003, 34A(4): 899-911.

    [35] 范淑敏, 陈送义, 张星临, 等. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201906018.htm
    [36] 郭冉. 等温与非等温时效工艺对Al-Zn-Mg合金螺旋面挤压型材组织性能的影响规律研究[D]. 济南: 山东大学, 2020.
    [37]

    JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2014, 605: 167-175.

    [38] 李吉臣, 冯迪, 夏卫生, 等. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202009008.htm
    [39]

    JIANG D M, LIU Y, LIANG S, et al. The effects of non-isothermal aging on the strength and corrosion behavior of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2016, 681: 57-65.

    [40]

    XU D K, BIRBILIS N, ROMETSCH P A, et al. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150[J]. Corrosion Science, 2012, 54: 17-25.

    [41] 李劲风, 陈永来, 张绪虎, 等. 非等温时效对一种铝锂合金力学性能与微观组织的影响[J]. 稀有金属材料与工程, 2017, 46(1): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201701031.htm
    [42] 吴国华, 孙江伟, 张亮, 等. 铝锂合金材料研究应用现状与展望[J]. 有色金属科学与工程, 2019, 10(2): 31-46. doi: 10.13264/j.cnki.ysjskx.2019.02.006
    [43]

    YANG W, JI S, HUANG L, et al. Initial precipitation and hardening mechanism during non-isothermal aging in an Al-Mg-Si-Cu 6005A alloy[J]. Materials Characterization, 2014, 94(8): 170-177.

    [44]

    YAZDANMEHR M, BAHRAMI A, ANIJDAN S H M. A precipitation-hardening model for non-isothermal ageing of Al-Mg-Si alloys[J]. Computational Materials Science, 2009, 45(2): 385-387.

图(6)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  47
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-13
  • 修回日期:  2021-12-25
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2022-10-30

目录

/

返回文章
返回
x 关闭 永久关闭