创刊于1987年, 双月刊
主管:

江西理工大学

主办:

江西理工大学
江西省有色金属学会

ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9

Bi2MoO6的形貌调控及其应用研究进展

张川群, 周勤, 徐冲, 刘新, 谭颖, 黄微雅

张川群, 周勤, 徐冲, 刘新, 谭颖, 黄微雅. Bi2MoO6的形貌调控及其应用研究进展[J]. 有色金属科学与工程, 2021, 12(2): 56-65. DOI: 10.13264/j.cnki.ysjskx.2021.02.008
引用本文: 张川群, 周勤, 徐冲, 刘新, 谭颖, 黄微雅. Bi2MoO6的形貌调控及其应用研究进展[J]. 有色金属科学与工程, 2021, 12(2): 56-65. DOI: 10.13264/j.cnki.ysjskx.2021.02.008
ZHANG Chuanqun, ZHOU Qin, XU Chong, LIU Xin, TAN Ying, HUANG Weiya. Morphology control of Bi2MoO6 and the research progress of its application[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 56-65. DOI: 10.13264/j.cnki.ysjskx.2021.02.008
Citation: ZHANG Chuanqun, ZHOU Qin, XU Chong, LIU Xin, TAN Ying, HUANG Weiya. Morphology control of Bi2MoO6 and the research progress of its application[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 56-65. DOI: 10.13264/j.cnki.ysjskx.2021.02.008

Bi2MoO6的形貌调控及其应用研究进展

基金项目: 

国家自然科学基金资助项目 21607064

国家自然科学基金资助项目 21707055

江西省自然科学基金青年重点资助项目 20192ACBL20014

江西省自然科学基金青年重点资助项目 20192ACBL21011

江西省自然科学基金资助项目 20181BAB203018

江西省自然科学基金资助项目 20181BAB213010

清江青年人才支持计划 JXUSTQJYX20170005

详细信息
    通讯作者:

    黄微雅(1981—),女,副教授,主要从事功能化介孔材料的设计与制备、废水中污染物的吸附去除/光催化技术的研究工作。E-mail:hweiya@126.com

  • 中图分类号: TF111.3;TG146

Morphology control of Bi2MoO6 and the research progress of its application

  • 摘要: 光催化技术是解决环境污染、能源危机以及微生物净化的有效手段之一,在半导体领域得到了广泛的应用和飞速的发展,其中Bi2MoO6因其具有较强的可见光响应性能和较窄带隙,逐渐成为光催化领域的研究热点。然而,Bi2MoO6较差的化学表面形态和缓慢的载体迁移速率也限制了Bi2MoO6光催化材料的实际应用。经研究发现,形貌调控是增强铋系光催化性能的有效方法。本文总结了近年来Bi2MoO6光催化剂的形貌调控和应用研究进展,分别从Bi2MoO6的形貌分类、制备方法及其应用等方面进行综述,探讨了反应时间、温度以及溶液pH值等因素对Bi2MoO6形貌的影响,对Bi2MoO6形貌调控的未来发展趋势和面临的挑战进行分析总结。
    Abstract: Photocatalytic technology is one of the effective means to solve environmental pollution, energy crisis and microbial purification, which has been widely used and developed rapidly in the semiconductor field. Among them, Bi2MoO6 has become a research hotspot in the field of photocatalysisdue to its strong visible light response performance and narrow band gap. However, the practical application of Bi2MoO6 is limited due to poor chemical surface morphology and slow carrier migration rate. Previous studies have proved that morphology adjustment is an effective method to enhance the photocatalytic performance of bismuth. In this paper, the research progress of morphology control and application of Bi2MoO6 photocatalyst in recent years was summarized, including morphology classification, preparation methods and applications. In addition, the factors affecting the morphology of Bi2MoO6 were also discussed, including reaction time, temperature, and pH value of the solution. Finally, the research direaction and challenges of Bi2MoO6 morphology control were proposed.
  • 钨是一种宝贵且应用广泛的稀有元素,被称为“工业的牙齿”.我国的钨资源非常丰富,储量居世界第一.长久以来,由于部分大型的钨多金属矿床中的矿石物质成分复杂,嵌布粒度细等特点,致使其选冶技术还没有得到彻底解决,因而现阶段仍然是以石英脉型黑钨矿作为主要的开采对象[1].黑钨矿是提炼钨的最主要矿石,也叫钨锰铁矿.我国的赣南、湘东、粤北一带是世界主要的黑钨矿产区.

    目前,预选丢废依旧是脉状黑钨矿选矿的重要工艺,就钨矿床的特点以及近期钨矿工业状况来看,人工手选还是预选丢废的主要手段[2].像重介质选矿、光电选矿等这些机械型的丢废选矿方法也有过生产应用但是效率不高,之后许多工厂对其作了相应的技术改造,如应用动筛跳汰加反手选作业这一方法提高选矿的实际成效.但同时提高了选矿的成本.考虑提高经济效益和提高废石的选出率这两方面的因素,提高合格矿品位是大势所趋.本文提出的SUSAN 快速算法就是在此基础上作为研究出发点,它成本低,效率高.具有很强的实用性.

    黑钨一般为褐红色至黑色.从黑钨矿的图像即可看出,它在矿石中的分布特征呈现致密状,而且是嵌在白色的石英晶体矿苗之中[3].正因为它的色度特征和纹理特征,为机器视觉技术分选钨矿提供了必要的前提.

    机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制.基于机器视觉的分选系统主要由图像获取、图像处理和分析及输出显示3 部分组成,它的最大特点就是速度快、信息量大.

    图像获取和输出显示可以通过外围的设备实现.图像处理主要是通过特征点提取出边缘,定出钨矿在原矿石中的位置,以便外围机器手精确抓取出来.

    SUSAN 算法[4]是最小吸收核同值区(Small Univalue Segment Assimilating Nucleus)英文缩写,它是英国牛津大学S.M.Smith 和J.M.Brady 在1997 年提出的一种关于灰度图像处理的算法.它具有简单、有效、抗噪声能力强,可以去除图像中的部分噪声[5].适用于图像中边缘的检测.

    SUSAN 算法采用一种圆形模板在图像上移动(如图 1 所示),将位于圆形窗口模板中心等待检测的像素点称为核心点.把模板内部每个图像的像素点的灰度值与核心点的灰度值进行比较,其差值在小于某个阈值,则认为灰度相同或相近,把符合这种条件的所有像素组成的区域称为吸收核同值区(Univalue Segment Assimilating Nucleus,USAN).

    图  1  圆形模板的几种典型位置

    图 1中,a,b,c,d,e 是模板在图像中的典型位置.由图 1 可知,在模板完全处在图像或背景的区域中时,USAN 区域面积最大,如模板c 和e;当模板的中心位于边缘时,USAN 区域面积是最大值的一半,如模板b; 当模板越靠近边缘时,USAN 的区域面积就越小[6],如模板d;当模板中心位于角点时,USAN 区域面积最小,如模板a.通过USAN 区域面积,就可以反映图像局部特征的强度,USAN 区域越小的边缘特征就越明显.故可以设定一个几何阈值,通过查找小于这个阈值的图像像素点,即可确定为边缘点,这就是SUSAN 算法原理[7].

    由于图像的数字化处理技术不能得到真正的圆形模板,所以在SUSAN 算法中使用近似圆当做模板.主要的模板有3×3、5×5、7×7 或37 像素等[8].考虑到边缘点判定结果更准确、稳定和明显,本文采用37 像素模板分析.如图 2 所示.

    图  2  37 像素的圆形模板

    在检测图像边缘过程中,采用选定的模板来扫描整幅待测图像,通过计算模板内的每一个像素点与核心点的灰度差值,并与设定好的灰度差阈值t 作比较,来判断该像素点是否属于USAN,判别公式(1)如下:

    (1)

    式(1)中,crr0 )表示模板中被检测的像素点是否属于USAN 区域像素的判别函数,I(r0)和I(r)分别表示模板中的核心点和其它任意点的灰度值,t 为设定的灰度差阈值.

    在实际计算中,可采取式(2)相似判别函数[6]来代替式(1):

    (2)

    经过式(2) 的判别,USAN 区域的大小可通过式(3)计算得到.式(3)如下:

    (3)

    将式(3)计算出来的区域n(r0)大小与预先设定的几何阈值g 作比较,小于g 则说明检测的像素点是一个边缘点.响应函数如下:

    (4)

    R 称为响应函数,g 称为几何阈值.g 的值一般取0.5 nmaxnmax为模板的最大USAN 值).在一些含噪的图像当中,且核心点在边缘附近时,g 的值一般取0.75 nmax.

    由式(4)得到的边缘响应值大小符合SUSAN 算法的思想,即USAN 区域值越小,被测图像边缘的响应就越大.

    由上述的SUSAN 算法思想可知,在SUSAN 算法里,灰度差阈值t 和几何阈值g 非常重要.几何阈值 g 决定了检测点的尖锐度,g 越小提取到的边缘点就越尖锐[9].本文在设计程序时,g 值取3nmax/4.灰度差阈值t决定了能检测到最小的对比度和噪声点的去除程度.t越小,表明检测到的点就越小,但有可能漏检;t 越大,会可能误检.对于不同灰度值的图像,对t 的要求不一样,这里给出一种自适应阈值t 的选取方法:

    (5)

    式(5)中:IimaxIimin分别表示图像中最大的和最小的 i 个灰度值,n 一般取5~10,a 表示比例系数,一般取0.15~0.30[10].

    SUSAN 算法的思想,需要对所有的像素点计算 USAN 值.实际上绝大部分图像的边缘都可以看成是近似垂直边缘、水平边缘、左斜边缘、右斜边缘4 种类型,如图 3 所示.所以不管是哪一种边缘类型,都可以以边缘点为中心作一条直线段,通过比较两端的像素点的灰度值,如果相等,说明这条直线段与边缘的方向一致,即重合.而其他方向上两者的像素灰度值差值会较大[11].

    图  3  近似边缘示意图

    根据这个特点,提出一种快速算法先对图像的边缘进行大致地定位: 首先,以每一个像素点为中心,在其两个垂直方向上作一直线段,计算两端的灰度值差; 其次,通过与给定的差值阈值Thr 进行比较,来判定是否属于候选边缘点或边缘相邻点.最后利用SUSAN 算法对候选边缘点做进一步的定位[8].计算公式是:

    (6)

    式(6)中,I1 (r)表示垂直图像边缘在图像背景中的像素值,I2 (r)表示垂直图像边缘在图像中的像素值.当二者的差值大于Thr 时,表示检测的像素点是候选边缘点I(r),小于Thr 的点则认为是在图像内部,可以剔除.

    以37 像素模板为例,SUSAN 算法加速之前,要判断边缘点需要做36 次的灰度比较减法运算和37次的USAN 值加法运算.在算法加速后,只需要做2次灰度比较的减法运算,以及1 次与差值阈值比较的减法运算,共计3 次减法运算就能剔除1 个像素[8].候选边缘点虽然多了3 次运算,但考虑到检测的图像区域内部像素很大,所以依旧能够大大减少总体的计算量[12].

    为验证本文算法在钨矿初选上的有效性,在酷睿2.7 GHz,内存2 GB 的计算机上进行试验.用Visual C++6.0 编写程序实现.

    本文的圆形模板采用37 像素.首先依次对其进行背景估计,灰度变换,通过计算自适应阈值t,几何阈值g 此处取27,最后根据快速算法思想提取图像边缘.与传统的一些边缘检测算法对比,分别在正常情况下、含常见噪声环境下对钨矿图像进行边缘检测,试验结果如图 4图 5图 6 所示,原始钨矿图像中白色部分表示可能含有钨的矿苗,这是需要留下的,而灰色的即为围岩需要丢弃的.

    图  4  原始钨矿图像检测结果
    图  5  含高斯噪声钨矿图像检测结果
    图  6  含椒盐噪声钨矿图像检测结果

    图 4图 5图 6 可以看出,与Roberts[13]算法、 Sobel[14]算法、LOG 算法和Canny[15]算法相比,Roberts算法和Sobel 算法对噪声敏感;LOG 算法和Canny算法定位精度不高,容易出现伪边缘;本文提出的算法在检测准确度、抗噪声性能上有明显的优势,表 1总结了这几种算法在性能指标上的对比.通过对比可知,加速后的算法在速度上也具有优势.结果证明在黑钨矿图像边缘选取上,本文的算法准确度高,抗噪性好,提取速度快.这些特点奠定了其在钨矿初选工艺有较好的应用价值.

    表  1  几种算法的性能指标比较
    下载: 导出CSV 
    | 显示表格

    针对钨矿初选过程中黑钨矿图像的特征,在分析 SUSAN 算法边缘检测方法的基础上,对SUSAN 算法做了相应地加速及改进.这种新提出的算法不需梯度的计算,具有算法简单、定位准确、抗噪声能力强等特点,提高了算法效率和时间,可提高图像边缘检测的效果,从而实现钨矿初选的有效算法.但如果要实际应用到工业过程中,需要结合DSP 硬件系统的要求,用基于Visual C++语言的软件设计平台把算法融合到系统当中,这将作为下一步的研究工作重点.

  • 图  1   Bi2MoO6的晶体结构图(1)示意

    Fig  1.   The crystal structure of Bi2MoO6(1)

    图  2   Bi2MoO6的晶体结构图(2)示意

    Fig  2.   The crystal structure of Bi2MoO6

    图  3   Bi2MoO6的形貌

    Fig  3.   Topography of Bi2MoO6

  • [1]

    ZHANG X, REN G, ZHANG C, et al. Photocatalytic reduction of CO2 to CO over 3D Bi2MoO6 microspheres: simple synthesis, high efficiency and selectivity, reaction mechanism[J]. Catalysis Letters, 2020, 150(9): 2510-2516. doi: 10.1007/s10562-020-03182-3

    [2]

    XU Y S, ZHANG Z J, ZHANG W D. Facile preparation of heterostructured Bi2O3/Bi2MoO6 hollow microspheres with enhanced visible-light-driven photocatalytic and antimicrobial activity[J]. Materials Research Bulletin, 2013, 48(4): 1240-1247. http://www.sciencedirect.com/science/article/pii/S0025540812010367

    [3] 雷晋淇, 沈强华, 蔡晨龙, 等. 工业氨氮废水的处理方法探讨[J]. 有色金属科学与工程, 2020(3): 99-104. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202003013
    [4]

    HAO Y, DONG X, ZHAI S, et al. Towards understanding the photocatalytic activity enhancement of ordered mesoporous Bi2MoO6 crystals prepared via a novel vacuum-assisted nanocasting method[J]. RSC Advances, 2016, 6(42): 35709-35718. doi: 10.1039/C6RA05796A

    [5] 李笑笑, 杨凯, 曾德彬, 等. 微波水热法制备棒状BiPO4催化剂及其光催化性能研究[J]. 有色金属科学与工程, 2019, 10(4): 78-84. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201904013
    [6] 张梦凡, 张振民, 贾静雯, 等. Z-型异质结光催化剂的设计、制备和应用研究进展[J]. 有色金属科学与工程, 2020, 11(3): 18-32. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202003003
    [7] 周锋, 任向红, 刘建友, 等. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19. doi: 10.11868/j.issn.1001-4381.2017.000972
    [8] 宋东东, 高彦华, 李文旭, 等. Bi2WO6光催化机理分析与性能优化的研究进展[J]. 化工科技, 2017, 25(6): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JKGH201706016.htm
    [9] 李跃军, 曹铁平, 梅泽民, 等. Ce掺杂Bi2MoO6/TiO2纳米纤维异质结的制备及可见光催化性能[J]. 无机化学学报, 2018, 34(4): 689-696. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201804011.htm
    [10]

    HE R, CAO S, ZHOU P, et al. Recent advances in visible light Bi-based photocatalysts[J]. Chinese Journal of Catalysis, 2014, 35(7): 989-1007. doi: 10.1016/S1872-2067(14)60075-9

    [11] 杜瑞安, 马小帅, 张萌迪, 等. 多壁碳纳米管/TiO2复合材料的合成及其光催化性能[J]. 有色金属科学与工程, 2019, 10(5): 75-84. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201905012
    [12] 王立艳, 张晓佳, 李嘉冰, 等. 纳米N-TiO2的制备、表征及光催化性能研究[J]. 无机盐工业, 2018(10): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201810022.htm
    [13] 王笑竹, 张凤君, 钟爽, 等. BiOBr可见光催化剂的研究进展[J]. 环境污染与防治, 2018, 40(8): 937-942. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201808018.htm
    [14]

    ZHOU L, WANG W Z, ZHANG L S. Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts[J]. J Mol Catal A-Chem, 2007, 268(1-2): 195-200. doi: 10.1016/j.molcata.2006.12.026

    [15]

    ZHANG S C, ZHANG CA, MAN Y, et al. Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties[J]. J Solid State Chem 2006, 179(1): 62-69. doi: 10.1016/j.jssc.2005.09.041

    [16] 李红花, 李坤威, 汪浩. α-Bi2Mo3O12和γ-Bi2MoO6的水热合成及可见光催化性能[J]. 无机化学学报, 2009, 25(3): 512-516. doi: 10.3321/j.issn:1001-4861.2009.03.025
    [17]

    TIAN G H, CHEN Y J, ZHOU W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J]. J Mater Chem, 2011, 21(3): 887-892. doi: 10.1039/C0JM03040F

    [18]

    LI H, LIU J, HOU W, et al. Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2014, 160/161: 89-97. doi: 10.1016/j.apcatb.2014.05.019

    [19]

    ZHANG L W, XU T G, ZHAO X, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J]. Appl Catal B-Environ, 2010, 98(3/4): 138-146. http://www.sciencedirect.com/science/article/pii/S0926337310002286

    [20]

    MENG X, ZHANG Z. Bi2MoO6 co-modified by reduced graphene oxide and palladium (Pd2+ and Pd0) with enhanced photocatalytic decomposition of phenol[J]. Applied Catalysis B: Environmental, 2017, 209: 383-393. doi: 10.1016/j.apcatb.2017.01.033

    [21]

    LI J, LIU X, SUN Z, et al. Mesoporous yolk-shell structure Bi2MoO6 microspheres with enhanced visible light photocatalytic activity[J]. Ceramics International, 2015, 41(7): 8592-8598. doi: 10.1016/j.ceramint.2015.03.068

    [22] 张萌迪, 陈范云, 马小帅, 等. 纳微结构Ag2CO3光催化材料的制备及其在光催化的应用[J]. 有色金属科学与工程, 2019, 10(2): 52-61. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201902008
    [23]

    WU X, HART J N, WEN X, et al. Improving the photo-oxidative performance of Bi2MoO6 by harnessing the synergy between spatial charge separation and rational co-catalyst deposition[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9342-9352. http://smartsearch.nstl.gov.cn/paper_detail.html?id=3b5d43c50fb7be850fd9d04441381aa6

    [24]

    DAI Z, QIN F, ZHAO H, et al. Time-dependent evolution of the Bi3.64Mo0.36O6.55/Bi2MoO6 heterostructure for enhanced photocatalytic activity via the interfacial hole migration[J]. Nanoscale, 2015, 7(28): 11991-11999. doi: 10.1039/C5NR02745D

    [25]

    XU J, YUE J, NIU J, et al. Synergistic removal of Cr(Ⅵ) and dye contaminants by 0D/2D bismuth molybdate homojunction photocatalyst under visible light[J]. Appl Surf Sci, 2019, 484: 1080-1088. doi: 10.1016/j.apsusc.2019.04.146

    [26]

    LIU X T, GU S N, ZHAO Y J, et al. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review[J]. Journal of Materials Science & Technology, 2020, 56: 45-68. http://www.sciencedirect.com/science/article/pii/S1005030220303558

    [27]

    BAI J, LI Y, LIU J, et al. 3D Bi2MoO6 hollow mesoporous nanostructures with high photodegradation for tetracycline[J]. Microporous and Mesoporous Materials, 2017, 240: 91-95. doi: 10.1016/j.micromeso.2016.11.008

    [28]

    STELO F, KUBLIK N, ULLAH S, et al. Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants[J]. Journal of Alloys and Compounds, 2020, 829: 154591. doi: 10.1016/j.jallcom.2020.154591

    [29] 张琴, 汪晓凤, 段芳, 等. Bi2MoO6中空微球的制备及其光催化性能[J]. 无机化学学报, 2015, 31(11): 2152-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201511008.htm
    [30] 石文超. 钼酸铋薄膜的化学溶液制备技术及其性能表征[J]. 化工管理, 2015(17): 153. doi: 10.3969/j.issn.1008-4800.2015.17.131
    [31] 张娟娟, 窦远明, 李静, 等. Bi2MoO6薄膜电极光电催化氧化处理氰化物的研究[J]. 环境科学学报, 2015, 35(3): 738-744. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201503017.htm
    [32]

    ZHAO X, XU T, YAO W, et al. Synthesis and photoelectrochemical properties of thin bismuth molybdates film with various crystal phases[J]. Thin Solid Films, 2009, 517(20): 5813-5818. doi: 10.1016/j.tsf.2009.02.135

    [33] 满毅, 宗瑞隆, 朱永法. Bi2MoO6纳米薄膜的制备及其光电性能[J]. 物理化学学报, 2007, (11): 1671-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200711006.htm
    [34]

    MAN Y, ZONG R, ZHU Y. Preparation and photoelectrochemical properties of Bi2MoO6 films[J]. Acta Physico-Chimica Sinica, 2007, 23(11): 1671-1676. doi: 10.1016/S1872-1508(07)60080-1

    [35] 郭吾卿, 余萍, 肖定全, 等. 钼酸铋薄膜的化学溶液制备技术及其性能表征[J]. 稀有金属材料与工程, 2008, 37(增刊2): 192-195. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2008S2053.htm
    [36] 杜永芳, 宋继梅, 王红, 等. 片状和颗粒状γ-Bi2MoO6的水热合成及可见光催化性能[J]. 武汉工程大学学报, 2011, 33(10): 73-76. doi: 10.3969/j.issn.1674-2869.2011.10.017
    [37] 张婷, 黄剑锋, 曹丽云, 等. 微波水热合成时间对Bi2MoO6微晶形貌和可见光催化性能的影响[J]. 硅酸盐学报, 2013, 41(5): 710-714. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201305024.htm
    [38]

    LI Z, WU Z, ZHANG S, et al. Defect state of indium-doped bismuth molybdate nanosheets for enhanced photoreduction of chromium(vi) under visible light illumination[J]. Dalton Trans, 2018, 47(24): 8110-8120. doi: 10.1039/C8DT01807C

    [39]

    ZHENG Y, ZHOU T, ZHAO X, et al. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior Lithium Ion storage[J]. Advanced Materials, 2017, 29(26): 1700396. doi: 10.1002/adma.201700396

    [40]

    LI S, HU S, JIANG W, et al. Hierarchical architectures of bismuth molybdate nanosheets onto nickel titanate nanofibers: Facile synthesis and efficient photocatalytic removal of tetracycline hydrochloride[J]. J Colloid Interface Sci, 2018, 521: 42-49. doi: 10.1016/j.jcis.2018.03.033

    [41] 胡海琴, 宁鹏, 周亚运, 等. 片状γ-Bi2MoO6的离子液体辅助水热合成及其增强的光催化活性[J]. 安徽大学学报(自然科学版), 2013, 37(6): 95-103. doi: 10.3969/j.issn.1000-2162.2013.06.015
    [42] 兰木, 向钢, 辜刚旭, 等. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究[J]. 物理学报, 2012, 61(22): 452-457. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201222068.htm
    [43] 方晓生, 张立德. 气相法合成一维无机纳米材料的研究进展[J]. 无机化学学报, 2006(9): 1555-1567. doi: 10.3321/j.issn:1001-4861.2006.09.001
    [44]

    SUN Y, WANG W, SUN S, et al. A general synthesis strategy for one-dimensional Bi2MoO6 (M = Mo, W) photocatalysts using an electrospinning method[J]. Cryst Eng Comm, 2013, 15(39): 7959. doi: 10.1039/c3ce41347k

    [45]

    ZHANG M, SHAO C, ZHANG P, et al. Bi2MoO6 microtubes: Controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity[J]. J Hazard Mater, 2012, 225-226: 155-163. doi: 10.1016/j.jhazmat.2012.05.006

    [46]

    ZHANG M, SHAO C, MU J, et al. One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity[J]. Cryst Eng Comm, 2012, 14(2): 605-612. doi: 10.1039/C1CE05974B

    [47]

    ZHAO J, LU Q, WANG Q, et al. α-Fe2O3 nanoparticles on Bi2MoO6 nanofibers: One-dimensional heterostructures synergistic system with enhanced photocatalytic activity[J]. Superlattices and Microstructures, 2016, 91: 148-157. doi: 10.1016/j.spmi.2016.01.002

    [48]

    ZHAO J, LU Q, WEI M, et al. Synthesis of one-dimensional α-Fe2O3/Bi2MoO6 heterostructures by electrospinning process with enhanced photocatalytic activity[J]. J Alloy Compd, 2015, 646: 417-424. doi: 10.1016/j.jallcom.2015.05.191

    [49]

    ZHENG F L, LI G R, YU X L, et al. Synthesis of bismuth molybdate nanowires via electrodeposition-heat-treatment method[J]. Electrochemical and Solid State Letters, 2009, 12(8): K56-K58. doi: 10.1149/1.3143909

    [50]

    XU M, ZHANG W D. Hydrothermal synthesis and photocatalytic performance of hierarchical Bi2MoO6 microspheres using BiOI microspheres as self-sacrificing templates[J]. J Solid State Chem, 2015, 227: 247-254. doi: 10.1016/j.jssc.2015.04.012

    [51] 缪应纯, 王刚, 陈广, 等. 醇热制备微球Bi2MoO6及其光催化活性[J]. 化学试剂, 2014, 36(2): 160-164. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201402022.htm
    [52]

    LI Z, MENG X, ZHANG Z. Few-layer MoS2 nanosheets-deposited on Bi2MoO6 microspheres: A Z-scheme visible-light photocatalyst with enhanced activity[J]. Catal Today, 2018, 315: 67-78. doi: 10.1016/j.cattod.2018.03.014

    [53]

    ZHANG J, MA Z. Flower-like Ag2MoO4/Bi2MoO6 heterojunctions with enhanced photocatalytic activity under visible light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 156-164. doi: 10.1016/j.jtice.2016.11.030

    [54] 缪应纯, 潘改芳, 霍宇凝, 等. 原位稀土修饰Bi2MoO6高效可见光催化剂[J]. 无机化学学报, 2014, 30(7): 1587-1592. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201407014.htm
    [55]

    XU Y S, YU Y X, ZHANG W D. Wide bandgap Bi2O2CO3-Coupled Bi2MoO6 heterostructured hollow microspheres: one-pot synthesis and enhanced visible-light photocatalytic activity[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 6800-6808. doi: 10.1166/jnn.2014.8974

    [56]

    MIAO Y, YIN H, PENG L, et al. BiOBr/Bi2MoO6 composite in flower-like microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. RSC Advances, 2016, 6(16): 13498-13504. doi: 10.1039/C5RA18987J

    [57] 张霞, 李艳, 李丹青, 等. 银耳状钼酸铋纳米花的合成及其锂离子电池性能研究[J]. 化工新型材料, 2019, 47(1): 132-135. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201901031.htm
    [58]

    LI S, HU S, JIANG W, et al. Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation[J]. J Colloid Interface Sci, 2018, 530: 171-178. doi: 10.1016/j.jcis.2018.06.084

    [59]

    CUI X, XU Y, ZHANG X, et al. In-situ deposited flower-like Bi2MoO6 microspheres thin film based sensors for highly selective detection of ppb-level H2S at low temperature[J]. Sensors and Actuators B: Chemical, 2017, 247: 681-690. doi: 10.1016/j.snb.2017.03.100

    [60]

    WANG S F, XU J, ZHANG Y, et al. Synthesis of γ-Bi2MoO6 spheres and their photocatalytic activities for degradation of rhodamine B[J]. Advanced Materials Research, 2012, 476/478: 988-993. doi: 10.4028/www.scientific.net/AMR.476-478.988

    [61]

    WU M, WANG Y, XU Y, et al. Self-supported Bi2MoO6 nanowall for photoelectrochemical water splitting[J]. ACS Appl Mater Interfaces, 2017, 9(28): 23647-23653. doi: 10.1021/acsami.7b03801

    [62]

    WANG M, YOU M Y, ZHANG K, et al. Bi3.64Mo0.36O6.55/Bi2MoO6 heterostructure composite with enhanced photocatalytic activity for organic pollutants degradation[J]. Journal of Alloys and Compounds, 2018, 766: 1037-1045. doi: 10.1016/j.jallcom.2018.07.062

    [63]

    SUN M, GUO P, WANG M, et al. The effect of calcination temperature on the photocatalytic performance of Bi2MoO6 for the degradation of phenol under visible light[J]. Optik, 2019, 199: 163319. doi: 10.1016/j.ijleo.2019.163319

    [64]

    ZHANG M Y, SHAO C L, MU J B, et al. Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties[J]. J Mater Chem, 2012, 22(2): 577-584. doi: 10.1039/C1JM13470A

    [65]

    XUE L, DA X A, RUI Z, et al. Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light[J]. Separation and Purification Technology, 2017, 178: 163-168. doi: 10.1016/j.seppur.2017.01.020

    [66]

    UMAPATHY V, MANIKANDAN A, ARUL A S, et al. Structure, morphology and opto-magnetic properties of Bi2MoO6 nano-photocatalyst synthesized by sol-gel method[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3271-3278. doi: 10.1016/S1003-6326(15)63948-6

    [67]

    KUMARA R, SUDHAIKA A, RAIZADAA P, et al. An overview on bismuth molybdate based photocatalytic systems: Controlled morphology and enhancement strategies for photocatalytic water purification[J]. Journal of Environmental Chemical Engineering, 2020(8): 104291. http://www.sciencedirect.com/science/article/pii/S2213343720306400

    [68]

    MU J J, ZHENG G H, MA Y Q. Morphology and photocatalytic properties of γ-Bi2MoO6 tuned by stirring and surfactant EDTA assistant[J]. Journal of Electronic Materials, 2016, 46(1): 596-601. doi: 10.1007/s11664-016-4925-3

    [69]

    WANG Y. Controllable growth of Bi2MoO6 nanoplates by citric acid assisted hydrothermal process and their photocatalytic properties[J]. MATEC Web of Conferences, 2016, 67: 06042. doi: 10.1051/matecconf/20166706042

    [70]

    PENG Y, ZHANG Y, TIAN F, et al. Structure tuning of Bi2MoO6 and their enhanced visible light photocatalytic performances[J]. Critical Reviews in Solid State and Materials Sciences, 2017, 42(5): 347-372. doi: 10.1080/10408436.2016.1200009

    [71]

    SUN C, XU Q, XIE Y, et al. High-efficient one-pot synthesis of carbon quantum dots decorating Bi2MoO6 nanosheets heterostructure with enhanced visible-light photocatalytic properties[J]. J Alloy Compd, 2017, 723: 333-344. doi: 10.1016/j.jallcom.2017.06.130

    [72]

    WAN S, OU M, ZHONG Q, et al. Construction of Z-scheme photocatalytic systems using ZnIn2S4, CoOxloaded Bi2MoO6 and reduced graphene oxide electron mediator and its efficient nonsacrificial water splitting under visible light[J]. Chemical Engineering Journal, 2017, 325: 690-699. doi: 10.1016/j.cej.2017.05.047

    [73] 张振民, 贾静雯, 张梦凡, 等. 双钙钛矿光催化剂材料研究进展[J]. 有色金属科学与工程, 2020, 11(4): 14-22. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202004003
    [74] 陈渊, 杨家添, 谢祖芳, 等. 乙二胺四乙酸辅助水热法制备钼酸铋及其可见光催化活性[J]. 硅酸盐学报, 2014, 42(1): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201401015.htm
    [75] 高俊杰, 郭鹏瑶, 高文皓, 等. 反应时间对Bi2MoO6晶体形貌和可见光催化性能的影响[J]. 材料热处理学报, 2016, 37(9): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201609003.htm
    [76]

    CHEN T, WANG M H, MA X Y. Preparation in Acidic and Alkaline Conditions and Characterization of α-Bi2Mo3O12 and γ-Bi2MoO6 Powders[J]. Journal of Electronic Materials, 2016, 45(8): 4375-4379. doi: 10.1007/s11664-016-4648-5

    [77]

    DUMRONGROJTHANATH P, THONGTEM T, PHURUANGRAT A, et al. Glycolthermal synthesis of Bi2MoO6 nanoplates and their photocatalytic performance[J]. Materials Letters, 2015, 154: 180-183. doi: 10.1016/j.matlet.2015.04.075

    [78]

    ZHU Y N, MU J J, ZHENG G H, et al. Morphology, photocatalytic and photoelectric properties of Bi2MoO6 tuned by preparation method, solvent, and surfactant[J]. Ceramics International, 2016, 42(15): 17347-17356. doi: 10.1016/j.ceramint.2016.08.031

    [79]

    WANG Q, SUN K, LU Q, et al. Synthesis of novel elm branch-like hierarchical γ-Bi2MoO6 nanostructures with enhanced visible-light-driven photocatalytic performance[J]. Dyes and Pigments, 2018, 155: 194-201. doi: 10.1016/j.dyepig.2018.03.048

    [80] 高俊杰, 郭鹏瑶, 高文皓, 等. 反应时间对Bi2MoO6晶体形貌和可见光催化性能的影响[J]. 材料热处理学报, 2016, 37(9): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201609003.htm
    [81]

    GUO W, LI H, TENG W, et al. Effect of the pH value of synthesis conditions on the phase structure and photocatalytic properties of bismuth molybdates synthesized using a hydrothermal method[J]. Nanomaterials and Nanotechnology, 2015(5): 24. http://www.researchgate.net/publication/282454676_Effect_of_the_pH_Value_of_Synthesis_Conditions_on_the_Phase_Structure_and_Photocatalytic_Properties_of_Bismuth_Molybdates_Synthesized_Using_a_Hydrothermal_Method

    [82]

    SILVA R C, AZARIO L M. Facile solvo-hydrothermal synthesis of Bi2MoO6 for the photocatalytic reduction of CO2 into ethanol in water under visible light[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127(2): 1059-1071. doi: 10.1007/s11144-019-01591-z

    [83]

    YU H B, JIANG L B, WANG H, et al. Modulation of Bi2MoO6-Based Materials for Photocatalytic Water Splitting and Environmental Application: a Critical Review[J]. Small, 2019, 15(23): 1901008. doi: 10.1002/smll.201901008

    [84] 王书红, 刘新, 孔斌, 等. 氧化铈/Bi2MoO6纳米复合材料的制备及其增强光催化降解性能研究[J]. 有色金属科学与工程, 2019, 10(2): 88-99. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201811013
    [85]

    XING Z, KONG W, WU T, et al. Hollow Bi2MoO6 Sphere Effectively Catalyzes the Ambient Electroreduction of N2 to NH3[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12692-12696. doi: 10.1021/acssuschemeng.9b03141

    [86]

    YE L Q, DENG Y, WANG L, et al. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion[J]. Chem Sus Chem, 2019, 12(16): 3671-3701. doi: 10.1002/cssc.201901196

  • 期刊类型引用(4)

    1. 李姿源,毕晨霞,陈娜,赵卫星,姜红波. 熔盐法制备钛酸锌陶瓷及其介电、铁电性能的研究. 化学工程师. 2024(11): 11-15+5 . 百度学术
    2. 李俊生,马娜,徐美艳,关天宇,夏至,谭冲,左金龙. ZnTiO_3催化剂制备条件的优化及光催化性能. 中国陶瓷. 2021(08): 56-63 . 百度学术
    3. 李俊生,徐美艳,关天宇,夏至,姜黎明,谭冲,左金龙. 水热辅助溶胶凝胶法制备纳米钛酸锌及其光催化性能. 土木与环境工程学报(中英文). 2020(03): 149-155 . 百度学术
    4. 刘婷,陈伟东,鞠红民,闫淑芳,张宇欣,马文. 聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为. 材料导报. 2019(14): 2315-2318 . 百度学术

    其他类型引用(4)

图(3)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  30
  • PDF下载量:  8
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-10-14
  • 发布日期:  2021-04-29
  • 刊出日期:  2021-03-31

目录

/

返回文章
返回