创刊于1987年, 双月刊
主管:

江西理工大学

主办:

江西理工大学
江西省有色金属学会

ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9

二维光催化材料研究进展

王颖, 杨传玺, 王小宁, 朱青, 董文平, 杨诚, 吕豪杰, 王炜亮, 樊玉琪

王颖, 杨传玺, 王小宁, 朱青, 董文平, 杨诚, 吕豪杰, 王炜亮, 樊玉琪. 二维光催化材料研究进展[J]. 有色金属科学与工程, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005
引用本文: 王颖, 杨传玺, 王小宁, 朱青, 董文平, 杨诚, 吕豪杰, 王炜亮, 樊玉琪. 二维光催化材料研究进展[J]. 有色金属科学与工程, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005
WANG Ying, YANG Chuanxi, WANG Xiaoning, ZHU Qing, DONG Wenping, YANG Cheng, LYU Haojie, WANG Weiliang, FAN Yuqi. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005
Citation: WANG Ying, YANG Chuanxi, WANG Xiaoning, ZHU Qing, DONG Wenping, YANG Cheng, LYU Haojie, WANG Weiliang, FAN Yuqi. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005

二维光催化材料研究进展

基金项目: 

国家自然科学基金资助项目 41672340

国家自然科学基金资助项目 11874244

山东省自然科学基金资助项目 ZR2016AM19

详细信息
    通讯作者:

    王炜亮(1979—),男,教授,博士,主要研究方向为水污染控制。E-mail: sunboyhood@163.com

  • 中图分类号: TG14;TF123.23

Research advances on two-dimensional materials using as photocatalysts

  • 摘要: 以石墨烯为代表的二维材料因其厚度尺寸和层状结构特点,表现出许多独特的物理化学性质,比如导电率高、化学性质稳定以及比表面积大等特点,在环境、材料、能源和催化领域具有广泛的应用前景。而二维材料与半导体复合,不仅可以拥有单个组分的优势,而且每种组分之间的相互作用还可能会引起本征性能的协同增强,因此二维材料-半导体复合光催化剂受到广泛的关注。文中首先介绍了二维材料的分类,包括石墨烯基二维材料和类石墨烯二维材料(六方氮化硼、过渡金属硫族化物、石墨相氮化碳、黑磷、第Ⅳ主族类石墨稀材料、金属有机骨架化合物和共价有机骨架化合物、层状双氢氧化物)。其次对二维材料和半导体-二维材料复合光催化剂的制备进行总结,重点介绍二维材料的“自上而下”和“自下而上”制备策略。最后从光催化降解有机污染物和光解水制氢对二维材料的光催化应用进行综述。基于二维材料光催化的研究现状和进展,进而对二维材料在光催化领域的前景进行展望,提高其实际应用价值。
    Abstract: Two-dimensional materials (such as graphene) showed many physical and chemical properties due to their unique thickness dimensions and layered structure characteristics, such as high conductivity, stable chemical properties and large specific surface area, which led to the wide range of applications in environment, materials, energy, and catalysis. The combination of two-dimensional materials and semiconductors can not only have the advantages of a single component, but the interaction between each component may also cause the synergistic enhancement of intrinsic properties. Therefore, the two-dimensional material-semiconductor composite photocatalyst had received extensive attention. In this review, the classification of two-dimensional materials was first introduced, including graphene-based two-dimensional materials and graphene-like two-dimensional materials (hexagonal boron nitride, transition metal chalcogenides, graphite phase carbon nitride, black phosphorus, group IV grapheme-like materials, metal organic framework compounds and covalent organic framework compounds, layered double hydroxides). Secondly, the preparation of two-dimensional materials and semiconductor-two-dimensional materials photocatalysts was summarized, and the preparation strategies of two-dimensional materials were focused on "top-down" and "bottom-up". Finally, the applications of two-dimensional materials were reviewed based on photocatalytic degradation of organic pollutants and photolysis of water to produce hydrogen. Based on the research current and advances of two-dimensional materials, this article looked forward to the prospects of two-dimensional materials in the field of photocatalysis, with the purpose of improving their practical application value.
  • 锶是一种性质极为活泼的碱土金属,可以增加材料的强度和抗腐蚀性能[1-2],因而享有“金属味精”之美誉[3-4]。锶也是表面活性元素,可作为A1、Mg等合金的优良变质剂和晶粒细化剂,在结晶学上能改变金属间化合物的行为,因此用它进行变质处理时可以改善金属的塑性加工性能和最终产品的质量[5-6]。Al-Sr合金是一种新型高效变质剂,同其他变质剂相比,变质时间长、无故变质行为、可反复重熔、无腐蚀作用等优点,主要用于铝硅系铸造合金、镁合金、锌合金等的变质及晶粒细化[7]

    熔盐电解法是目前正在研究的一种生产Al-Sr合金的方法[8]。它采用液态阴极法,即以液体铝为阴极,电解生成的金属锶在阴极铝液表面析出,并扩散到铝液内部,从而形成成分均匀、利于变质作用的铝锶合金。邹兴武、[9]李继东[10]、张明杰等[11]开展了以SrCl2或SrCO3为原料,在SrCl2-KCl-SrF2熔盐体系中制备Al-Sr合金的研究,做出了有意义的探索。但是关于熔盐电解法制备合金的电化学过程的基础研究的文献报道却相对较少[12-14],而研究锶从熔盐体系中析出的电化学过程,有利于明晰其在阴极析出的电化学反应机理及控制步骤, 对优化工艺条件、提高电流效率和降低生产能耗具有重要的理论和现实意义。本文采用循环伏安、计时电流和计时电位等三种电化学方法对LiF-SrF2-SrO熔盐体系中金属锶在钨电极上的还原过程进行研究,对其电化学行为进行分析和探究。

    实验所用原材料LiF、SrF2和SrO等均为分析纯化学试剂,将其放入干燥箱,在温度373 K下烘干12 h备用。电解质体系按25.25 %LiF-74.75 %SrF2(wt%,以下同)进行配比,加入无水氧化锶作为电解原料,在研钵中研磨并混合均匀后再次放入干燥箱进行干燥。将烘干后的熔盐放入石墨坩埚,然后置于坩埚电阻炉内加热至1253 K,并在此温度下保温运行。

    在电化学工作站(瑞士万通AUTOLAB PGSTAT302,工作电流放大器:BOOSTER 10 A)上,采用由一个工作电极(即熔盐中锶离子能在上面进行氧化或还原的电极)、一个对电极(辅助电极)和一个参比电极组成的三电极体系,分别用循环伏安、计时电流和计时电位等三种电化学方法开展电化学研究。工作电极为钨丝(Ф1 mm,99.95 %),采用SiC砂纸抛光后进行超声波清洗。对电极为钨棒(Ф10 mm,99.95 %),使用前采用1 mol/L NaOH溶液加热至50℃恒温2 h,以清除表面的WO3,再用去离子水清洗后干燥。参比电极采用铂丝(Ф1 mm,99.99 %)。铂丝和钨丝外均套上刚玉管套进行密封,只露出伸入熔盐的部分,以减少高温环境下的损伤。电极插入熔盐的深度由精密提升控制装置来控制[15],此深度值决定了电极的工作面积。

    为了更好地研究Sr2+在熔盐体系中的还原机理,首先对不含SrO原料的25.25 %LiF-74.75%SrF2电解质体系进行空白曲线扫描,从而获得该体系的循环伏安曲线,如图 1所示。

    图  1  1253 K时25.25 %LiF-74.75%SrF2熔盐体系的循环伏安图
    Figure  1.  Cyclic voltammogram of 25.25 %LiF-74.75 %SrF2 molten system at 1253 K

    图 1可以发现,当阴极电位由0V增加至-1.5 V时,电流开始迅速增加,表明此时电解质氟化物开始分解并析出金属。在-1.5 V~0 V电位范围内没有出现氧化还原峰,说明在此电势范围内,LiF-SrF2熔盐体系电化学性能稳定,不存在氧化还原反应。另外,整个测试过程中并未发现分析纯化学试剂中微量杂质对实验结果产生明显影响。

    在空白曲线扫描基础上,对掺入0.2 %SrO原料后的25.25 %LiF-74.75 %SrF2熔盐体系进行了研究。温度1253 K下,测试获得不同扫描速率v下Sr2+在钨电极上的循环伏安曲线,如图 2所示。

    图  2  1253 K时不同扫描速率下25.25 %LiF-74.75 %SrF2-SrO熔盐体系的循环伏安图
    Figure  2.  Cyclic voltammograms of 25.25 %LiF-74.75 %SrF2 -SrO molten salt systems at 1253 K under different scan rates

    图 2可以看出,阴极扫描过程中绘制的循环伏安既出现了还原峰A、B及氧化峰C,其中,还原峰A为锶离子的还原峰,还原峰B可认为是离子的重新组合引起的电流变化,峰C为氧化峰,本文仅对锶离子在钨电极上的还原机理进行分析,对氧化峰C不作分析。而随着扫描速率的增加,还原峰A的峰电位不断向负方向偏移,且峰位电流Ip增大。由此判断该体系中Sr2+在铂电极上的阴极还原过程为准可逆反应。

    下面结合Heyrovsky-Ilkovic方程对曲线中还原峰的转移电子数作进一步研究分析。Heyrovsky-Ilkovic方程[16]可用下式表示:

    $$ E = B + \frac{{2.3RT}}{{nF}}\lg \frac{{{I_p} - I}}{I}, $$ (1)

    式中,B为半峰电位,V;T为实验温度,K;R为气体常数,8.314;n为转移电子数;F为法拉第常数,96500 C/mol;Ip为峰电流,A。

    由上式可看出,E与 $\lg \frac{{{I_p} - I}}{I}$ 成线性关系,即若以电位(E)与电流(I)作 $E\sim\lg \frac{{{I_p} - I}}{I}$ 关系图,则表现为一条斜率为 $\frac{{2.3RT}}{{nF}}$ 的直线。就循环伏安曲线中还原峰A而言,其 $E - \lg \frac{{{I_p} - I}}{I}$ 关系图如图 3所示。

    图  3  还原峰A中E-lg[(Ip-I)/I]关系图
    Figure  3.  The relationship between E and lg[(Ip-I)/I] of reduction wave A

    图 3中可以看出,电位E与lg[(Ip-I)/I]呈正比线性关系,由该直线斜率可以计算获得电子转移数n=2.2 ≈ 2,即锶在钨电极上的析出过程为一步得到两个电子的反应。

    那该电化学过程的控制步骤是什么呢?若将图 2中不同扫描速率下获得的Sr2+在钨电极上的循环伏安曲线中的还原峰电流Ip与相应的扫描速率v的平方根作图,其结果如图 4所示。

    图  4  峰电流Ip随扫描速率平方根v1/2之间的关系
    Figure  4.  The relationship between the peak current and the square root of scan rate

    下面结合图 4来作进一步的分析。由图 4可以看出,随着扫描速率平方根v1/2的增加,峰电流Ip随之增大,且二者呈线性关系。根据Randles-Sevick方程:

    $$ {I_p} = 0.4463nFA{\left( {\frac{{RT}}{{nF}}} \right)^{1/2}}{D^{1/2}}{v^{1/2}}{C_0} $$ (2)

    式中,A为电极面积,cm2D为扩散系数,cm2/s;v为点位扫描速率,V/s;C0为熔盐中反应物浓度,mol/cm3。其它参数意义同式(1)。

    Ipv1/2之间的线性关系及Randles-Sevick方程可推断Sr2+在钨电极上的阴极电化学过程受扩散步骤控制[17-18]

    计时电流法是指向电化学体系的工作电极施加单电位阶跃或双电位阶跃后,测量电流响应与时间的函数关系。本实验以LiF-SrF2为电解质,SrO为原料,在1253 K温度下,根据熔盐体系的循环伏安曲线(图 2),在Sr2+析出的电势范围内,在钨电极上进行计时电流曲线的测定,从而获得电流I与时间t的关系曲线,如图 5所示。

    图  5  25.25% LiF-74.75 % SrF2熔盐体系中锶离子的计时电流图
    Figure  5.  chronoamperogram of lithium ions in 25.25 % LiF-74.75% SrF2 eutectic melts at 1253 K

    图 5可以看出,恒电位下,锶在钨电极上析出,开始时电流最高,随着锶的不断析出,电极附近锶离子浓度降低,熔盐中锶离子来不及扩散至电极表面,从而导致电流迅速衰减。一段时间后,锶离子向电极表面扩散并与析出速率逐渐平衡,因而电流相应地趋于平稳。通过计时电流曲线,同样可以表明Sr2+的电化学过程受到扩散步骤控制。

    若将图 5中的数据以电流I与时间t-1/2I~t-1/2图,则其结果如图 6所示。

    图  6  It-1/2的关系图
    Figure  6.  The relationship between Iand t-1/2

    图 6可知,电流I与时间t-1/2基本符合线性关系,且It-1/2的增加而增大。根据Cottroll方程:

    $$ I = \frac{{nFA{D^{1/2}}{C_0}}}{{{\pi ^{\frac{1}{2}}}{t^{\frac{1}{2}}}}} $$ (3)

    上式中各参数的意义同式(1)和式(2)。

    由式(3)可知,若式中各参数恒定,则电流I与时间t-1/2成线性关系,其斜率表示为 $\frac{{nFA{D^{1/2}}{C_0}}}{{{\pi ^{\frac{1}{2}}}{t^{\frac{1}{2}}}}}$ 。由图 6中直线斜率(0.13221)及各参数值(n=2,A=1.6014 cm2C0=9.73×10-5mol/cm3),可计算获得锶离子在钨电极上的扩散系数D=6.07×10-5 cm2/s。

    为了进一步研究锶离子的阴极还原过程,在温度1253 K条件下,对LiF-SrF2-SrO熔盐体系中Sr2+在钨电极上的计时电位曲线进行了测量,结果如图 7所示。

    图  7  1253 K时LiF-SrF2-0.2% SrO熔盐体系中锶离子的计时电位图
    Figure  7.  The chronopotentiometry of lithium ions in LiF-SrF2 eutectic melts containing 0.2 % SrO at 1253 K

    图 7可以看出,在电位为-1.0 V附近出现一个电位增加减缓的平台,与循环伏安曲线(图 2)中还原峰A相对应,此为锶离子的析出峰平台,可读出锶离子析出的过渡时间τ。根据Sand方程[19]

    $$ {\tau ^{1/2}} = \frac{{{\pi ^{1/2}}{D^{1/2}}nF}}{{2i}}{C_0} $$ (4)

    式中,τ为沉积的过渡时间,是Sr2+从开始电解到它在电极表面的浓度降低至零的时间,s;i为阴极上施加的工作电流,其它参数意义同上。

    通过图 7确认沉积的过渡时间为区间0.22 s-1.64 s,即1.42 s,阴极上施加的工作电流i为0.085 A,其它参数已知,从而结合sand方程计算出锶离子在熔盐中的扩散系数为D=3.71×10-5 cm2/s。与Cottrel方程计算得出的扩散系数相差不大,属同一数量级。

    针对熔盐电解法制备铝-锶合金的体系,在电化学工作站AUTOLAB上,采用三电极体系以循环伏安法、计时电流法和计时电位法等电化学方法,对1253 K温度下锶在钨电极上的电化学还原过程及其控制步骤进行了研究和探索,其结果对优化工艺条件、提高电流效率和降低生产能耗具有一定的理论和现实意义。主要结论有:

    (1)在LiF-SrF2-SrO熔盐体系中,锶离子在钨电极上的电化学还原为一步得两个电子的准可逆反应。

    (2)循环伏安法和计时电位法的研究结果表明,锶在钨电极上的析出过程受扩散步骤控制,扩散系数为6.07×10-5 cm2/s,析出电位在-1.0 V附近。

  • 图  1   TiO2光催化原理示意[5]

    Fig  1.   Photocatalytic mechanism of TiO2 photocatalytic[5]

    图  2   石墨烯-TiO2光催化剂[12]

    Fig  2.   Graphene-TiO2 photocatalyst[12]

    图  3   常见的二维光催化材料[53]

    Fig  3.   Common two-dimensional photocatalytic materials[53]

    表  1   自上而下法制备二维材料

    Table  1   Preparation of two-dimensional materials via top-down method

    下载: 导出CSV

    表  2   自下而上法制备二维材料

    Table  2   Preparation of two-dimensional materials via bottom-up method

    下载: 导出CSV

    表  3   二维材料光催化剂的应用和性能

    Table  3   Application and performance of two-dimensional materials as photocatalysts

    下载: 导出CSV
  • [1]

    FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0

    [2]

    GOLE J L, STOUT J D, BURDA C, et al. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale[J]. The Journal of Physical Chemistry B. 2004, 108(4): 1230-1240. doi: 10.1021/jp030843n

    [3] 杨传玺, 董文平, 王炜亮, 等. 导电聚合物改性TiO2光催化剂合成及应用研究进展[J]. 化工新型材料, 2015, 43(1): 226-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201501076.htm
    [4] 魏龙福, 余长林. 石墨烯/半导体复合光催化剂的研究进展[J]. 有色金属科学与工程, 2013, 4(3): 34-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201303007
    [5] 黄瑞宇, 罗序燕, 赵东方, 等. 银掺杂二氧化钛及其光催化性能研究[J]. 有色金属科学与工程, 2016, 7(2): 67-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602012
    [6] 杨传玺, 董文平, 乔光明, 等. 二氧化钛改性及应用研究进展[J]. 化工新型材料, 2015, 43(10): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201510010.htm
    [7]

    XIANG Q J, YU J G, JARONIEC M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews, 2012, 41: 782-796. doi: 10.1039/C1CS15172J

    [8] 管美丽. 二维超薄卤氧化铋半导体纳米材料的可控制备及其光催化性质研究[D]. 合肥: 中国科学技术大学, 2014.
    [9] 李能, 孔周舟, 陈星竹, 等. 新型二维材料光催化与电催化研究进展[J]. 无机材料学报, 2020, 35(7): 735-747. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL202007001.htm
    [10] 於逸骏, 张远波. 从二维材料到范德瓦尔斯异质结[J]. 物理, 2017, 46(4): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201704001.htm
    [11] 方华斌. 基于二维纳米材料的光催化剂设计、制备及性能研究[D]. 北京: 北京化工大学, 2018.
    [12]

    WILLIAMS G, SEGER B, KAMAT P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano, 2008, 2(7): 1487-1491. doi: 10.1021/nn800251f

    [13]

    THOMAS J M, GERALD J M, BRIAN W P, et al. Molecular-level electron transfer and excited state assemblies on surfaces of metal oxides and glass[J]. Inorganic Chemistry, 1994, 33(18), 3952-3964. doi: 10.1021/ic00096a020

    [14]

    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896

    [15] 熊厚冬, 陈洋, 王磊, 等. 氧化石墨烯修饰FeSiCr纳米复合材料的微波吸收性能[J]. 有色金属科学与工程, 2020, 11(3): 44-51. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202003006
    [16]

    VELASCO J, JING L, BAO W, et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene[J]. Nature Nanotechnology, 2012, 7: 156-160. doi: 10.1038/nnano.2011.251

    [17]

    XIA F, MUELLER T, GOLIZADEH-MOJARAD R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3): 1039-1044. doi: 10.1021/nl8033812

    [18]

    FREITAG M, LOW T, AVOURIS P. Increased responsivity of suspended graphene photodetectors[J]. Nano Letters, 2013, 13(4): 1644-1648. doi: 10.1021/nl4001037

    [19]

    ZHANG Y Z, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013(4): 1811. http://www.nature.com/articles/ncomms2830

    [20]

    LOW T, AVOURIS P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2): 1086-1101. doi: 10.1021/nn406627u

    [21]

    PUTRI L K, ONG W J, CHANG W S, et al. Heteroatom doped graphene in photocatalysis: a review[J]. Applied Surface Science, 2015, 358(2015): 2-14.

    [22] 刘洋. 基于二维纳米MoS2和石墨烯的光催化剂的制备及其产氢性能研究[D]. 大连: 大连理工大学, 2014.
    [23]

    TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689. doi: 10.1126/science.285.5428.687

    [24]

    LIN L, FENG Y P, SHEN Z X, et al. Structural and electronic properties of h-BN[J]. Physical Review B, 2003, 68(10): 104102. doi: 10.1103/PhysRevB.68.104102

    [25]

    WATANABE K, TANIGUCHI T, KANDA H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nature Materials, 2004, 3(6): 404-409. doi: 10.1038/nmat1134

    [26]

    ZENG H B, ZHI C Y, ZHANG Z H, et al. " White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping[J]. Nano Letters, 2010, 10(12): 5049-5055. doi: 10.1021/nl103251m

    [27]

    AZEVEDO S, KASCHNY J R, CASTILHO C M C, et al. Electronic structure of defects in a boron nitride monolayer[J]. European Physical Journal B, 2009, 67(4): 507-512. doi: 10.1140/epjb/e2009-00043-5

    [28]

    ZHOU J, WANG Q, SUN Q, et al. Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine[J]. Physical Review B, 2010, 81(8): 85442-85442. doi: 10.1103/PhysRevB.81.085442

    [29]

    NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439. doi: 10.1126/science.aac9439

    [30] 马衍东. 分子纳米链和二维材料的电子结构及相关性质的第一性原理研究[D]. 济南: 山东大学, 2014.
    [31]

    MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805-136805. doi: 10.1103/PhysRevLett.105.136805

    [32]

    RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. doi: 10.1038/nnano.2010.279

    [33]

    REALE F, SHARDA K, MATTEVI C. From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis[J]. Applied Materials Today, 2016(3): 11-22.

    [34]

    LEE Y H, ZHANG X Q, ZHANG W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798

    [35]

    SHAW J C, ZHOU H L, CHEN Y, et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets[J]. Nano Research, 2014, 7(4): 511-517. doi: 10.1007/s12274-014-0417-z

    [36]

    ZHOU H, WANG C, SHAW J C, et al. Large area growth and electrical properties of p-type WSe2 atomic layers[J]. Nano Letters, 2014, 15(1): 709-713.

    [37]

    KANG K, XIE S, HUANG L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549): 656-660. doi: 10.1038/nature14417

    [38]

    MATTHEW D J, NGOC H H, NOTLEY S M, et al. Aqueous dispersions of exfoliated molybdenum disulfide for use in visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12751-12756.

    [39]

    GE L, HAN C C, XIAO X L, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity[J]. International Journal of Hydrogen Energy, 2013, 38(17): 6960-6969. doi: 10.1016/j.ijhydene.2013.04.006

    [40]

    ZONG X, YAN H, WU G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. Journal of the American Chemical Society, 2008, 130(23): 7176-7177. doi: 10.1021/ja8007825

    [41]

    GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel–crafts reaction of benzene[J]. Angewandte Chemie International Edition, 2006, 45(27): 4467-4471. doi: 10.1002/anie.200600412

    [42]

    THOMAS A, FISCHER A, CARLSSON J M, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908. doi: 10.1039/b800274f

    [43] 马小帅, 陈范云, 张萌迪, 等. g-C3N4基光催化剂的制备和应用[J]. 有色金属科学与工程, 2018, 9(3): 42-52. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201803008
    [44]

    BROWN A, RUNDQVIST S. Refinement of the crystal structure of black phosphorus[J]. Acta Crystallographica, 1965, 19(4): 684-685. doi: 10.1107/S0365110X65004140

    [45]

    LING X, WANG H, HUANG S, et al. The renaissance of black phosphorus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4523-4530. doi: 10.1073/pnas.1416581112

    [46]

    FAVRON A, GAUFRES E, FOSSARD F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832. doi: 10.1038/nmat4299

    [47]

    AUFRAY B, KARA A, VIZZINI S, et al. Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene[J]. Applied Physics Letters, 2010, 96(18): 183102. doi: 10.1063/1.3419932

    [48]

    CAHANGIROV S, TOPSAKAL M, AKTUERK E, et al. Two- and one-dimensional honeycomb structures of silicon and germanium[J]. Physical Review Letters, 2009, 102(23): 236804. doi: 10.1103/PhysRevLett.102.236804

    [49]

    TAO L, CINQUANTA E, AKINWANDE D, et al. Silicene field-effect transistors operating at room temperature[J]. Nature Nanotechnology, 2015, 10(3): 227-231. doi: 10.1038/nnano.2014.325

    [50]

    DÁVILA, M E, XIAN L, CAHANGIROV S, et al. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene[J]. New Journal of Physics, 2014, 16(9): 3579-3587.

    [51]

    ZHAO S L, WANG Y, DONG J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016(1): 16184.

    [52]

    ZHAO M Q, ZHANG Q, HUANG J Q, et al. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications[J]. Advanced Functional Materials, 2012, 22(4): 675-694. doi: 10.1002/adfm.201102222

    [53] 刘志伟, 张斌, 陈彧. 二维纳米材料及其衍生物在激光防护领域中的应用[J]. 物理学报, 2020(8): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202018003.htm
    [54]

    MA R, LIU Z, LI L, et al. Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets[J]. Journal of Materials Chemistry, 2006, 16(39): 3809-3813. doi: 10.1039/b605422f

    [55]

    TAN C, ZHANG H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials[J]. Nature Communications, 2015(6): 7873.

    [56]

    LI L, YU Y, YE G, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014(9): 372-377.

    [57]

    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896

    [58]

    NOVOSELOV K S, JIANG D, GEIMA K, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. doi: 10.1073/pnas.0502848102

    [59]

    HERNANDEZ Y, NICOLOSI V, COLEMAN J N, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. doi: 10.1038/nnano.2008.215

    [60]

    COLEMAN J N, LOTYA M, NICOLOSI V, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. doi: 10.1126/science.1194975

    [61]

    LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 277-283.

    [62]

    PATON K R, VARRLA E, COLEMAN J N, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624-630. http://www.nature.com/articles/nmat3944/

    [63]

    VARRLA E, BACKES C, COLEMAN J N, et al. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation[J]. Chemistry of Materials, 2015, 27(3): 1129-1139.

    [64]

    ZHENG J, ZHANG H, DONG S, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nature Communications, 2014, 5(1): 2995. doi: 10.1038/ncomms3995

    [65]

    ZENG Z, YIN Z, ZHANG H, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication[J]. Angewandte Chemie International Edition, 2011, 50(47): 11093-11097. doi: 10.1002/anie.201106004

    [66]

    ZENG Z, SUN T, ZHANG H, et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets[J]. Angewandte Chemie International Edition, 2012, 51(36): 9052-9056. doi: 10.1002/anie.201204208

    [67]

    MA R, SASAKI T. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites[J]. Advanced Materials, 2010, 22(45): 5082-5104. doi: 10.1002/adma.201001722

    [68]

    FRINDT R F, YANG D, WESTREICH P. Exfoliated single molecular layers of Mn0.8PS3 and Cd0.8PS3[J]. Journal of Materials Research, 2005, 20(05): 1107-1112. doi: 10.1557/JMR.2005.0161

    [69]

    WANG Q, O'HARE, DERMOT. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155.

    [70]

    ZHU Y, POTTS J R, RUOFF R S, et al. Graphene and graphene oxide: synthesis, properties and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. doi: 10.1002/adma.201001068

    [71]

    NG V M H, HUANG H, KONG L B, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications[J]. Journal of Materials Chemistry A, 2017, 5(7): 3039-3068.

    [72]

    CHO W B, KIM J W, LEE H W, et al. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 125 μm[J]. Optics Letters, 2011, 36(20): 4089-4091. doi: 10.1364/OL.36.004089

    [73]

    BAEK I H, LEE H W, BAE S, et al. Efficient mode-locking of sub-70-fs Ti: Sapphire laser by graphene saturable absorber[J]. Applied Physics Express, 2012, 5(3): . 032701.

    [74]

    YU J, LI J, CHANG H, et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition[J]. Chemical Science, 2015, 6(12): 6705-6716.

    [75]

    XU C, WANG L, REN W, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials, 2015, 14(11): 1135-1141.

    [76]

    TAN C, ZHANG H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials[J]. Nature Communications, 2015(6): 7873.

    [77]

    SHI W D, SONG S Y, ZHANG H J. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures[J]. Chemical Society Reviews, 2013, 42(13): 5714-5743. doi: 10.1039/c3cs60012b

    [78]

    HUANG X, LI S Z, HUANG Y Z, et al. Synthesis of hexagonal close-packed gold nanostructures[J]. Nature Communications, 2011, (2): 292.

    [79]

    WU X J, HUANG X, LIU J, et al. Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation[J]. Angewandte Chemie International Edition, 2014, 53, 5083-5087.

    [80]

    ACHARYA S, DAS B, THUPAKULA U, et al. A bottom-up approach toward fabrication of ultrathin PbS sheets[J]. Nano Letters, 2013, 13: 409-415. doi: 10.1021/nl303568d

    [81]

    SCHLIEHE C, PELLETIER M, JANDER S, et al. Ultrathin PbS sheets by two-dimensional oriented attachment[J]. Science, 2010, 329(5591): 550-553.

    [82] 黄飞, 蒲雪超, 冉濛, 等. 二硫化钼纳米材料在光催化应用中的研究进展[J]. 材料导报, 2016, 30(15): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201615002.htm
    [83]

    LAMBERT T N, CHAVEZ C A, BELL N S, et al. Large area mosaic films of grapheme-titania: self-assembly at the liquid-air interface and photo-responsive behavior[J]. Nanoscale, 2011, 3(1): 188-191. doi: 10.1039/C0NR00638F

    [84]

    RICHARD L M. Advanced carbon electrode materials for molecular electrochemistry[J]. Chemical Reviews, 2008, 108(7): 2646-2687. doi: 10.1021/cr068076m

    [85]

    BAI L C, WANG X, TANG S B, et al. Black phosphorus/platinum heterostructure: a highly efficient photocatalyst for solar-driven chemical reactions[J]. Advanced Materials, 2018, 30: 1803641. doi: 10.1002/adma.201803641

    [86]

    LI Y G, WANG Y, LU J M, et al. 2D intrinsically defective RuO2/graphene heterostructures as all-pH efficient oxygen evolving electrocatalysts with unprecedented activity[J]. Nano Energy, 2020, 78: 105185. doi: 10.1016/j.nanoen.2020.105185

    [87] 孙洋洋. 磁性氧化石墨烯/TiO2复合光催化剂的制备及其光催化降解染料废水的研究[D]. 西安: 长安大学, 2015.
    [88] 林岳. 石墨烯-半导体复合材料的设计、制备与性能研究[D]. 合肥: 中国科学技术大学, 2012.
    [89] 刘静华. 石墨烯基纳米半导体异质结材料的制备及光催化性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [90]

    LI X W, XIA J X, ZHU W S, et al. Facile synthesis of few-layered MoS2 modified BiOI with enhanced visible-light photocatalytic activity[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2016, 511: 1-7.

    [91]

    AWASTHI G P, ADHIKARI S P, KO S, et al. Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties[J]. Journal of Alloys and Compounds, 2016, 682: 208-215.

    [92]

    SHAIKH A, MISHRA S P, MOHAPATRA P, et al. One-step solvothermal synthesis of TiO2-reduced graphene oxide nanocomposites with enhanced visible light photoreduction of Cr(Ⅵ)[J]. Journal of Nanoparticle Research, 2017, 19(6): 206. doi: 10.1007/s11051-017-3894-7

    [93]

    LIU N, LU N, YU H T, et al. Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants[J]. Chemosphere, 2020, 246: 125760. doi: 10.1016/j.chemosphere.2019.125760

    [94]

    LIANG Y, WANG H, CASALONGUE H S, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials[J]. Nano Research, 2010, 3(10): 701-705. doi: 10.1007/s12274-010-0033-5

    [95] 周琪. 石墨烯基二氧化钛纳米复合材料的制备与光催化性能研究[D]. 合肥: 合肥工业大学, 2014.
    [96]

    YU L, ZHANG X, LI G, et al. Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light[J]. Applied Catalysis B: Environmental, 2016, 187: 301-309. doi: 10.1016/j.apcatb.2016.01.045

    [97]

    ZHANG W, XIAO X, LI Y, et al. Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2/g-C3N4 photocatalyst and DFT study[J]. Applied Surface Science, 2016, 389(15): 496-506.

    [98] 牛海涛. S掺杂TiO2/石墨烯复合催化剂制备及光催化分解水制氢[D]. 哈尔滨: 哈尔滨理工大学, 2014.
    [99] 朱柏林. 石墨烯/二硫化钼/硫化物复合光催化剂的制备及性能研究[D]. 厦门: 华侨大学, 2014.
    [100]

    LIU C, XIONG M, CHAI B, et al. Construction of 2D/2D Ni2P/CdS heterojunctions with significantly enhanced photocatalytic H2 evolution performance[J]. Catalysis Science & Technology, 2019, 9(24): 6929-6937.

    [101]

    YANG S B, GONG Y, ZHANG J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17): 2452-2456. doi: 10.1002/adma.201204453

    [102]

    KUMAR D P, HONG S, D A R, et al. Noble metal-free ultrathin MoS2 nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation[J]. Journal of Materials Chemistry A, 2016(4): 18551-18558.

    [103] 张宝娣. 光解水催化剂的第一性原理研究[D]. 南京: 南京师范大学, 2020.
    [104]

    YU J, YU J C, LEUNG K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis, 2003, 217(1): 69-78.

    [105]

    YU J, WANG W, CHENG B, et al. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment[J]. The Journal of Physical Chemistry C, 2009, 113(16): 6743-6750. doi: 10.1021/jp900136q

    [106]

    YU J, SU Y, CHENG B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-mesoporous titania[J]. Advanced Functional Materials, 2010, 17(12): 1984-1990.

    [107]

    YU J, DAI G, HUANG B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2009, 113(37): 16394-16401. doi: 10.1021/jp905247j

    [108]

    ZHAO S S, CHEN S, YU H, et al. g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation[J]. Separation & Purification Technology, 2012, 99(8): 50-54.

    [109]

    XU Y G, XU H, WANG L, et al. The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity[J]. Dalton Transactions, 2013, 42(21): 7604-7613. doi: 10.1039/c3dt32871f

    [110]

    CAIA T, WANGC L, LIUA Y, et al. Ag3PO4/Ti3C2 MXene interface materials as a schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance[J]. Applied Catalysis B: Environmental, 2018, 239: 545-554. doi: 10.1016/j.apcatb.2018.08.053

    [111]

    YAN S C, LV S B, LI Z S, et al. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. [J]. Dalton Transactions, 2010, 39: 1488-1491. doi: 10.1039/B914110C

    [112]

    YU J, HAI Y, JARONIEC M. Photocatalytic hydrogen production over CuO-modified titania[J]. Journal of Colloid and Interface Science, 2011, 357(1): 223-228. doi: 10.1016/j.jcis.2011.01.101

    [113] 王玉营, 陈建彪, 张旭强, 等. 不同直链二胺对敏化石墨烯制氢光催化剂性能的影响[J]. 分子催化, 2020, 34(189): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-FZCH202001002.htm
    [114]

    LIN B, LI H, AN H, et al. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high efficiency photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 220: 542-552. doi: 10.1016/j.apcatb.2017.08.071

    [115]

    IQBAL S, PAN Z W, ZHOU K B. Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der waals heterostructures[J]. Nanoscale, 2017, 9: 6638-6642. doi: 10.1039/C7NR01705G

  • 期刊类型引用(7)

    1. 蒋小康,高峰,周恒为. Y_2MgTiO_6∶Dy~(3+), Eu~(3+)荧光粉的发光性能及能量传递. 硅酸盐通报. 2025(01): 353-359 . 百度学术
    2. 符彪,颜昊坤,李仁富,冯刘振,余依棋,廖金生. 稀土掺杂铌酸钆白光上转换发光材料的构筑与发光机理. 有色金属科学与工程. 2024(05): 774-780 . 本站查看
    3. 鞠泉浩,丁双双,李霜. 稀土离子Tm~(3+)掺杂MgAl_2O_4材料发光特性. 邵阳学院学报(自然科学版). 2024(06): 52-59 . 百度学术
    4. 赵宇聪,张汝彬,王俊杰,龚国亮,黄建辉. 荧光粉Ca_3NbGa_3Si_2O_(14):Dy~(3+)/Tm~(3+)的制备及其发光性能的研究. 中国稀土学报. 2023(05): 853-861 . 百度学术
    5. 蒋小康,张王曦月,高峰,周恒为. Dy~(3+)掺杂Y_2MgTiO_6荧光粉的制备及发光性质研究. 人工晶体学报. 2023(10): 1809-1815 . 百度学术
    6. 蒋小康,高峰,尹红梅,周恒为. Sm~(3+)离子激活Y_2MgTiO_6橙红色荧光粉的制备及发光性质研究. 半导体光电. 2023(05): 703-708 . 百度学术
    7. 房珍宇,杨丹,郑佑馗,朱静. 钠离子对KNa_4B_2P_3O_(13):Sm荧光粉发光性能的增强作用研究. 有色金属科学与工程. 2022(02): 123-130 . 本站查看

    其他类型引用(1)

图(3)  /  表(3)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  66
  • PDF下载量:  52
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-12-23
  • 发布日期:  2021-04-29
  • 刊出日期:  2021-03-31

目录

/

返回文章
返回