创刊于1987年, 双月刊
主管:

江西理工大学

主办:

江西理工大学
江西省有色金属学会

ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9

N-双(膦羟甲基)甘氨酸在闪锌矿和方铅矿浮选分离中的应用

王子豪, 丰奇成

王子豪, 丰奇成. N-双(膦羟甲基)甘氨酸在闪锌矿和方铅矿浮选分离中的应用[J]. 有色金属科学与工程, 2024, 15(6): 911-921. DOI: 10.13264/j.cnki.ysjskx.2024.06.014
引用本文: 王子豪, 丰奇成. N-双(膦羟甲基)甘氨酸在闪锌矿和方铅矿浮选分离中的应用[J]. 有色金属科学与工程, 2024, 15(6): 911-921. DOI: 10.13264/j.cnki.ysjskx.2024.06.014
WANG Zihao, FENG Qicheng. Application of N-Bis(phosphonomethyl)glycine in the flotation separation of sphalerite and galena[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 911-921. DOI: 10.13264/j.cnki.ysjskx.2024.06.014
Citation: WANG Zihao, FENG Qicheng. Application of N-Bis(phosphonomethyl)glycine in the flotation separation of sphalerite and galena[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 911-921. DOI: 10.13264/j.cnki.ysjskx.2024.06.014

N-双(膦羟甲基)甘氨酸在闪锌矿和方铅矿浮选分离中的应用

基金项目: 

云南省优秀青年资助项目 202301AW070018

详细信息
    通讯作者:

    丰奇成(1987— ),博士,教授,博士生导师,主要从事浮选理论与技术方面的研究。E-mail:fqckmust@163.com

Application of N-Bis(phosphonomethyl)glycine in the flotation separation of sphalerite and galena

  • 摘要:

    通过浮选试验、接触角测定、Zeta电位、X射线光电子能谱分析(XPS)、密度泛函理论计算(DFT)研究了N-双(膦羟甲基)甘氨酸 (NADMP)对闪锌矿和方铅矿可浮性的影响,并揭示了NADMP对闪锌矿的选择性抑制机理。浮选试验结果表明:在pH=8及NADMP用量为80 mg/L的条件下,混合铅锌硫化矿浮选过程,方铅矿和闪锌矿的回收率的差值超过70%。表面检测及模拟计算结果表明:NADMP通过其膦酸官能团中P-O键上的O原子与闪锌矿表面Zn原子成键,从而化学吸附在闪锌矿表面,但其与方铅矿表面的相互作用较弱;接触角测试进一步证实了NADMP对闪锌矿表面疏水性的影响更大。因此NADMP对闪锌矿具有选择性抑制作用。

    Abstract:

    This study examined the effects of N-bis(phosphonomethyl)glycine (NADMP) on the flotation characteristics of sphalerite and galena using flotation experimentation, contact angle tests, Zeta potential measurements, X-ray photoelectron spectroscopy (XPS), and Density functional theory (DFT), elucidating the selective inhibition mechanism of NADMP towards sphalerite. Results from the flotation tests revealed that the variance in recovery for galena and sphalerite, with a pH setting of 8 and an NADMP concentration of 80 mg/L, surpassed 70%. Surface analysis and simulation results indicated that NADMP chemically adsorbed onto the sphalerite surface by bonding the oxygen atoms in its phosphonic acid functional group’s P-O bond with the zinc atoms of sphalerite. In contrast, its interaction with galena surfaces was relatively weak. The contact angle tests further confirmed the NADMP’s greater impact on the hydrophobicity of the sphalerite surface. Hence, NADMP exhibits selective depressed effects on the sphalerite.

  • 铅锌矿中,铅、锌单独测定的方法报道很多,而快速连续测定的尚不多见.由于铅锌矿中铅、锌含量都较高,测锌时必须将铅分离除去,否则会使滴定终点不稳定,且测得锌的结果明显偏高.目前,铅、锌单独测定的分析方法[1-2]流程都很长,手续繁杂,劳动强度大,成本高.笔者经过长期实践,拟定出一个一次分解试样,连续测定铅锌的分析方法.

    所用试剂均为分析纯,水为蒸馏水.

    盐酸(ρ1.19 g/mL);硝酸(ρ1.42 g/mL);硫酸(1+ 1);硫酸(2+98);二甲酚橙指示剂(5g/L);氨水(1+ 1);硝酸(1+1);硝酸(1+3);酒石酸饱和溶液;无水乙酸钠;氯化铵;过硫酸铵;氨水(ρ0.9 g/mL);氟化铵;硫脲饱和溶液;碘化钾;乙酸-乙酸钠缓冲溶液(pH5.5):将150 g无水乙酸钠溶于水中,加入50 mL乙酸,用水稀释至1000 mL,混匀;乙二胺四乙酸二钠(Na2EDTA)溶液(0.01 mol/L).

    乙二胺四乙酸二钠(Na2EDTA)标准滴定溶液(0.025 mol/L):称取9.4 g Na2EDTA(C10H14N2O8 Na2·2H2O)于500 mL烧杯中,加热水溶解,冷却,移入1000 mL容量瓶中,以水稀释至刻度,混匀.

    铅的标定:按规程准确称取0.2000 g金属铅(≥99.99%) 3份于3个300 mL烧杯中,加入20 mL稀硝酸(1+3),盖上表面皿,加热溶解完全.用水吹洗表面皿及杯壁,低温煮沸驱除氮的氧化物,冷却.以氨水(1+1)调节溶液pH5.5~6(以精密pH试纸检查),加30 mL乙酸-乙酸钠缓冲溶液(pH5.5),用水稀释体积至约150 mL,加入2~3滴二甲酚橙指示剂(5 g/L),用0.025 mol/L的EDTA标准溶液滴定至溶液由红色变为亮黄色即为终点.

    锌标准溶液:称取1.0000 g金属锌(99.99%),置于300 mL烧杯中,加入30 mL盐酸(1+1),置于电热板上微热溶解,冷却,移入1000 mL容量瓶中,以水稀释至刻度,混匀.此溶液1 mL含1 mg锌.

    锌的标定:准确移取锌标准溶液50.00 mL于300 mL烧杯中,加入2~3滴二甲酚橙指示剂(5 g/L),用氨水(1+1)中和至紫红色刚刚出现,加入20 mL乙酸-乙酸钠缓冲溶液(pH5.5),搅匀后,用EDTA标准滴定溶液(0.025 mol/L)滴定至溶液由紫红色变为亮黄色即为终点.

    称取0.2000 g试样于300 mL烧杯中,以少量水润湿矿样, 加15 mL盐酸, 低温加热分解10 ~ 15 min,取下稍冷,加10 mL硝酸,继续加热分解至溶液约剩2~3 mL,取下,用水吹洗表面皿及杯壁,加入15 mL硫酸(1+1),加热蒸发至冒硫酸浓厚白烟3 min,取下,冷却.用硫酸(2+98)吹洗表面皿及杯壁至体积约50 mL,加热煮沸10~15 min,取下,流水冷却,静置1 h.用慢速定量滤纸过滤,以硫酸(2+98)洗净烧杯并洗涤沉淀8~10次,再用水洗涤烧杯及沉淀各2次.

    (1) 铅的测定.将滤纸连同沉淀移入原烧杯中,加20 mL硝酸(1+1),低温煮沸1~2 min,取下,冷却,用少量水吹洗表面皿及烧杯内壁,以氨水(1+1)调整溶液pH1.2~1.5(用精密pH试纸检查).加0.1~0.2 g抗坏血酸,搅匀,滴入1~2滴酒石酸饱和溶液,搅匀,加2~3滴二甲酚橙指示剂,此时如溶液呈红色表示有铋存在,用EDTA溶液滴定至溶液由红色变为亮黄色,不计读数.加4 g无水乙酸钠,搅匀,调整溶液pH5.5~6(用精密pH试纸检查),煮沸,补加少许二甲酚橙指示剂,趁热用EDTA标准溶液滴定至溶液由红色变为亮黄色即为终点.计算铅的含量.

    (2) 锌的测定.于滤液中加入3 g氯化铵,约0.1 g过硫酸铵,30 mL氨水,煮沸以彻底破坏过剩的过硫酸铵,并浓缩至体积约50 mL,取下补加5~10 mL氨水,冷却,移入100 mL容量瓶中,以水定容,摇匀.干过滤,移取25 mL滤液于原烧杯中,加入少许氟化铵,加入0.1~0.2 g抗坏血酸,以硫酸(1+ 1)中和至溶液由紫红色变为黄色,再以氨水(1+1)调至紫红色刚刚出现,加入5 mL硫脲饱和溶液,搅匀,加20 mL乙酸-乙酸钠缓冲溶液,搅匀后,加3~4 g碘化钾,用EDTA标准溶液滴定至溶液由紫红色变为亮黄色即为终点.计算锌的含量.

    (1) 测铅时干扰物质的影响及消除.铁:当试料含有大量铁时,在硫酸冒白烟过程中,分析出黄色硫酸铁沉淀与硫酸铅共存,用乙酸钠溶解后,铁被带入乙酸铅溶液.用EDTA滴定时,铁(Ⅲ)会使指示剂僵化.试验证明,硫酸铁在硫酸(5+95)中经10~15 min煮沸,可完全进入溶液,过滤后将硫酸铅洗至无铁(Ⅲ)离子反应(以50%硫氰酸钾检验),残留的铁在EDTA滴定前加入少量抗坏血酸,即可消除其干扰[3].

    锑、铋:锑、铋均易水解,生成沉淀夹杂在硫酸铅中,对EDTA测定铅有干扰.当锑量不超过50 mg时,可在酒石酸存在下沉淀硫酸铅,以消除其干扰,少量铋也可加酒石酸掩蔽之[4].但酒石酸存在,对硫酸铅沉淀完全有一定影响,尤其是铅量较低时影响更甚,因此应控制加入量.实验选择在EDTA滴定前,先使锑同酒石酸合,以消除其影响,铋的干扰则是调节溶液pH1.2~1.5用EDTA络合铋借以消除.

    (2) 测锌时干扰物质的影响及消除[3].铁、铝、铜等元素存在,使指示剂产生封闭、僵化,因而干扰测定.铁、铝可用氢氧化铵沉淀分离,残留的少量铁、铝则滴定前加适量氟化铵和抗坏血酸掩蔽.铜的干扰则是在滴定前加5 mL硫脲饱和溶液借以消除.

    铅:试样中含少量铅时,可在硝酸介质中加入硫酸铵使铅成硫酸铅沉淀,同铁、铝之氢氧化物同时过滤除去.但当试料中含铅量超过100 mg时,铅沉淀往往不完全,当调整pH时析出沉淀,用EDTA溶液滴定时又会溶解,因而使终点不稳定,测得锌之结果偏高.本实验选择将铅完全转变为硫酸铅沉淀,用过滤硫酸铅之后的滤液测定锌,则完全消除了铅的干扰.

    锰:在氨性溶液中,当有铵盐存在时,锰不易沉淀完全,溶液中的锰会逐渐被空气中之氧氧化,生成棕色之难溶解的亚锰酸H2MnO3,影响滴定.为了分离锰,本实验选择在分解试料后加入氧化剂过硫酸铵,使之氧化成二氧化锰与铁、铝之氢氧化物一起除去.

    镉:EDTA络合滴定锌常常测的是锌、镉合量,计算锌的结果时还需用原子吸收法测出镉的含量,然后用差减法扣除.本试验选择在滴定前加碘化钾以掩蔽镉,则可直接测出锌的含量.

    (1) 测铅时酸度的选择:硫酸铅沉淀最适宜的酸度为15%~60%(以重量计).当酸度小于15%和大于60%时,硫酸铅的溶解度都会增大.本实验选择沉淀酸度为25%左右.

    (2) 测锌时酸度的选择:为了得到准确的结果,选择最佳的pH值非常重要,pH低于5.8,终点拖长,pH大于6.0,产生封闭现象,因此应严格控制滴定时pH为5.8~6.0[5].

    为了防止氢氧化铁、氢氧化铝沉淀吸附锌,试液中必须有一定量的铵盐和过量的氢氧化铵存在.试验证明,在100 mL试液中,加入1.5 g氯化铵及25 mL氢氧化铵,75 mg铁和25 mg铝,沉淀时对锌的吸附可以忽略不计.同时,铁、铝氢氧化物沉淀前后均须加热煮沸,以减少对锌的吸附.但须很好掌握加热程度,以防止沉淀胶化及氨挥发过多而使锌受损失[3].考虑到试液加热煮沸时间及氨的挥发损失等几方面的因素,选择在100 mL试液中,加入3 g氯化铵,先加30 mL氨水煮沸后补加5~10 mL,可得满意结果.

    称取2个铅锌矿试样,1个锌精矿分析标准样品(批号:BY0110-1,云南锡业集团有限责任公司研究设计院研制)及1个铅精矿分析标准样品(批号:BY0111-1,云南锡业集团有限责任公司研究设计院研制)按实验方法进行6次重复分析,并同时按国标方法进行分析及与标准样品证书值进行结果对照,分析结果重现性见表 1,对照结果见表 2.

    表  1  分析结果重现性(n=6)/(wt)%
    下载: 导出CSV 
    | 显示表格
    表  2  分析结果对照表/(wt)%
    下载: 导出CSV 
    | 显示表格

    表 1表 2可以看出,本方法测定结果稳定,重复性好,与国家标准分析方法测定结果及标准样品证书值基本吻合,误差均在国家标准允许差范围之内.该方法简单易行,结果准确,测定铅、锌两个元素,只需分解一次试样,大大缩减了分析时间,提高了工作效率,减少了能源损耗.

    赵中波
  • 图  1   NADMP的分子结构

    Fig  1.   Molecular structure of NADMP

    图  2   微浮选试验流程

    Fig  2.   Micro-flotation experimental procedure

    图  3   理想闪锌矿和方铅矿表面结构:(a)闪锌矿(110);(b)方铅矿(100)

    Fig  3.   Diagram of the surface structure of ideal sphalerite and galena: (a) sphalerite (110) ; (b) galena (100)

    图  4   矿浆pH对铅锌硫化矿可浮性的影响:(a)单矿物;(b)人工混合矿

    Fig  4.   Influence of pH on the floatability of lead-zinc sulfide minerals: (a) single mineral; (b) artificial mixed mineral

    图  5   NADMP用量对铅锌硫化矿可浮性的影响:(a)单矿物;(b)混合矿

    Fig  5.   Influence of NADMP concentration on the floatability of sphalerite and galena: (a) single mineral; (b) mixed mineral

    图  6   闪锌矿表面接触角:(a)闪锌矿;(b)闪锌矿+SBX;(c)闪锌矿+NADMP;(d)闪锌矿+NADMP+SBX

    (d) sphalerite+NADMP+SBX

    Fig  6.   Contact angles of sphalerite: (a) sphalerite; (b) sphalerite+SBX; (c) sphalerite+NADMP;

    图  7   方铅矿表面接触角:(a)方铅矿;(b)方铅矿+SBX;(c)方铅矿+ NADMP;(d)方铅矿+NADMP+SBX

    Fig  7.   Contact angles of galena: (a) galena; (b) galena+SBX; (c) galena+NADMP; (d) galena+NADMP+SBX

    图  8   矿浆pH对闪锌矿和方铅矿表面Zeta电位的影响:(a) 闪锌矿;(b)方铅矿

    Fig  8.   Influence of pH on the zeta potential of sphalerite and galena: (a) sphalerite; (b) galena

    图  9   矿浆pH对NADMP组分浓度的影响

    Fig  9.   The influence of pH on the concentration of NADMP components

    图  10   不同条件下闪锌矿表面Zn 2p能谱:(a)闪锌矿;(b)闪锌矿+NADMP;(c)闪锌矿+NADMP+SBX

    Fig  10.   Zn 2p spectra of sphalerite surface under various conditions: (a) sphalerite; (b) sphalerite+NADMP; (c) sphalerite+NADMP+SBX

    图  11   不同条件下闪锌矿表面P 2p能谱:(a)闪锌矿;(b)闪锌矿+SBX;(c)闪锌矿+NADMP;(d)闪锌矿+NADMP+SBX

    Fig  11.   P 2p spectra of sphalerite surface under various conditions: (a) sphalerite; (b) sphalerite+SBX; (c) sphalerite+NADMP; (d) sphalerite+NADMP+SBX

    图  12   不同条件下闪锌矿表面O 1s能谱:(a)闪锌矿;(b)闪锌矿+NADMP

    Fig  12.   O 1s spectra of sphalerite surface under various conditions: (a) sphalerite; (b) sphalerite+NADMP

    图  13   NADMP在闪锌矿和方铅矿表面吸附后一种可能的吸附构型:(a)闪锌矿;(b)方铅矿

    Fig  13.   A possible adsorption configuration of NADMP on the surfaces of sphalerite and galena:(a) sphalerite; (b) galena

  • [1] 刘志国,张宇,康金星,等. 青海某复杂铜铅锌矿选矿试验研究[J]. 中国矿山工程,2022,51(5):75-81.
    [2] 邓文,赵云,于星才,等. 云南某硫精矿二次回收铅锌工艺研究[J]. 有色金属科学与工程,2023,14(2):264-271.
    [3] 陈雄,何名飞,卜浩,等. 某铅锌硫化矿无碱浮选新工艺研究[J]. 有色金属工程,2023,13(7):75-80.
    [4] 罗仙平,杨思琦,何坤忠,等. “十三五”期间我国铅锌硫化矿选矿技术进展[J]. 有色金属科学与工程,2022,13(3):117-129.
    [5]

    YANG B Q, ZHU H Y, ZENG L Y, et al. An environmental-friendly sphalerite depressant (2-Hydroxyphosphonoacetic Acid) for the selective flotation separation of sphalerite from galena [J]. Journal of Molecular Liquids, 2021, 343:117614.

    [6] 曹占芳,谭锦勇,钟宏. 醋酸-醋酸钠体系中铜铅硫化矿物电氧化浸出分离行为[J]. 有色金属科学与工程,2020,11(5):1-6.
    [7]

    JIA Y, HUANG X P, HUANG K H, et al. Synthesis, flotation performance and adsorption mechanism of 3-(ethylamino)-N-phenyl-3-thioxopropanamide onto galena/ sphalerite surfaces [J]. Journal of Industrial and Engineering Chemistry, 2019, 77: 416-425.

    [8]

    LONG X H, CHEN Y, CHEN J H, et al. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study [J]. Applied Surface Science, 2016, 389: 103-111.

    [9]

    TAN X, ZHU Y G, SUN C Y, et al. Adding cationic guar gum after collector: A novel investigation in flotation separation of galena from sphalerite [J]. Minerals Engineering, 2020, 157: 106542.

    [10] 刘洋,童雄,吕晋芳,等. 硫化铅锌矿物浮选分离研究进展[J]. 矿产保护与利用,2022,42(3): 106-114.
    [11]

    LASKOWSKI J S, LIU Q, ZHAN Y. Sphalerite activation: flotation and electrokinetic studies[J].Minerals Engineering, 1997, 8: 787-802.

    [12]

    FINKELSTEIN N P. The activation of sulphide minerals for flotation: a review[J]. International of Minerals Processing, 1997, 52: 81-120.

    [13]

    LIU Y, WEI Z C, XUE C. Selective depression of Pb2+-activated sphalerite by potassium ferricyanide in Pb-Zn sulfides flotation separation[J]. Minerals Engineering, 2022, 182: 107558.

    [14]

    GÜL A, YÜCE A E, SIRKECI A A, et al. Use of non-toxic depressants in the selective flotation of copper-lead-zinc ores[J]. Canadian Metallurgical Quarterly, 2008, 47(2): 111-118.

    [15]

    EL-SHALL H E, ELGILLANI D A, ABDEL-KHALEK N A. Role of zinc sulfate in depression of lead-activated sphalerite[J]. International Journal of Mineral Processing, 2000, 58: 67-75.

    [16] 王子豪,丰奇成. 氨基三亚甲基膦酸在闪锌矿和方铅矿浮选分离中的应用[J]. 金属矿山,2023,566:87-95.
    [17]

    SHEN W Z, FORNASIERO D, RALSTON J. Flotation of sphalerite and pyrite in the presence of sodium sulfite[J]. International Journal of Mineral Processing, 2001, 63: 17-28.

    [18] 曹飞,曹进成,吕良,等. 内蒙古某富银铅锌硫化矿浮选分离试验研究[J], 矿业工程,2023,43(3): 67-71.
    [19]

    LI J M, SONG KW, LIU D W, et al. Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite[J]. Journal of Molecular Liquids, 2017, 231: 485-490.

    [20] 冯博,郭宇涛,王涛,等. 氧化剂在刺槐豆胶浮选分离方铅矿和闪锌矿中的作用及机理 [J]. 中南大学学报(自然科学版), 2020, 51: 1-7.
    [21]

    FENG B, ZHONG C H, ZHANG L Z, et al. Effect of surface oxidation on the depression of sphalerite by locust bean gum[J]. Minerals Engineering, 2020, 146: 106142.

    [22]

    HUANG P, CAO M L, LIU Q. Selective depression of sphalerite by chitosan in differential Pb-Zn flotation[J]. International Journal of Mineral Processing, 2013, 122: 29-35.

    [23]

    BU X Z, CHEN F F, CHEN W, et al. The effect of whey protein on the surface. property of the copper-activated marmatite in xanthate flotation system[J]. Applied Surface Science, 2019,479: 303-310.

    [24]

    WANG C T, LIU R Q, SUN W, et al. Selective depressive effect of pectin on sphalerite flotation and its mechanisms of adsorption onto galena and sphalerite surfaces[J]. Minerals Engineering, 2021, 170: 106989.

    [25]

    CUI Y F, JIAO F, QIN W Q, et al. Flotation separation of sphalerite from galena using eco-friendly and efficient depressant pullulan[J]. Separation and Purification Technology, 2022, 295, 121013.

    [26]

    ZHU H Y, YANG B Q, Martin R, et al. Flotation separation of galena from sphalerite using hyaluronic acid (HA) as an environmental-friendly sphalerite depressant[J]. Minerals Engineering, 2022, 187: 107771.

    [27]

    BRETTI C, STEFANO C D, LANDO G, et al. Solubility, acid-base properties and thermodynamics of interaction between three NTA-phosphonate derivatives and the main cationic components (H+, Na+,Mg2+ and Ca2+) of natural fluids[J]. Journal of Chemical Thermodynamics, 2018, 123: 117-127.

    [28]

    SLOVIN J P, TOBIN E M. Glyphosine, a plant-growth regulator, affects chloroplast membrane-proteins[J]. Biochimica et Biophysica Acta, 1981, 637(1): 177-184.

    [29]

    PRADHAN L, MOHANTY R I, BAL R, et al. New microporous nickel phosphonate derivatives N, P-codoped nickel oxides and N, O-codoped nickel phosphides: Potential electrocatalysts for water oxidation[J]. Catalysis Today, 2023, 424: 113771.

    [30]

    MENELAOU M, DASKALAKIS M, MATEESCU A, et al. In depth investigation of the synthesis, structural, and spectroscopic characterization of a high pH binary Co(Ⅱ)-N,N-bis(phosphonomethyl) glycine species. Association with aqueous speciation studies of binary Co(Ⅱ)-(carboxy) phosphonate systems [J]. Polyhedron, 2011, 30: 427-437.

    [31]

    PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for abinitio total-energy calculations-molecular-dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045-1097.

    [32]

    PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687.

    [33]

    HAMMER B, HANSEN L B, NORSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59(11): 7413-7421.

    [34]

    VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.

    [35]

    NISHIDATE K, YOSHIZAWA M, HASEGAWA M. Energetics of Mg and B adsorption on polar zinc oxide surfaces from first principles[J]. Physical Review B, 2008, 77(3): 035330.

    [36]

    WESTERBACK S, RAJAN K S, MARTELL A E. New multidentate ligandsⅢ amino acids containing methylenephosphonate groups[J]. Journal of the American Chemical Society, 1965, 87(12): 2567-2572.

    [37]

    FENG J C, YANG B Q, ZHU H Y, et al. The utilization of 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) as a novel sphalerite depressant in the selective flotation of galena from sphalerite[J]. Applied Surface Science, 2021, 569: 150950.

    [38]

    EJTEMAEI M, NGUYEN A V. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate[J]. Minerals Engineering, 2017,100: 223-232.

  • 期刊类型引用(1)

    1. 赵越,刘宇奇,金楠皓,王新颖,刘小铭,陈寒,李玮,李杨华. 基于含氮衍生物和羧酸的Co(Ⅱ)配合物的合成、结构及磁学、荧光性质. 云南大学学报(自然科学版). 2024(02): 309-318 . 百度学术

    其他类型引用(0)

图(13)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2024-02-11
  • 刊出日期:  2024-12-30

目录

/

返回文章
返回
x 关闭 永久关闭