创刊于1987年, 双月刊
主管:

江西理工大学

主办:

江西理工大学
江西省有色金属学会

ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9

第一性原理设计阳离子掺杂H-Nb2O5负极材料及其电化学性能研究

刘航辰, 陈海停, 刘若涵, 赵鹏博, 赵志朋, 刘俊琪, 胡浩

刘航辰, 陈海停, 刘若涵, 赵鹏博, 赵志朋, 刘俊琪, 胡浩. 第一性原理设计阳离子掺杂H-Nb2O5负极材料及其电化学性能研究[J]. 有色金属科学与工程, 2024, 15(5): 732-739. DOI: 10.13264/j.cnki.ysjskx.2024.05.013
引用本文: 刘航辰, 陈海停, 刘若涵, 赵鹏博, 赵志朋, 刘俊琪, 胡浩. 第一性原理设计阳离子掺杂H-Nb2O5负极材料及其电化学性能研究[J]. 有色金属科学与工程, 2024, 15(5): 732-739. DOI: 10.13264/j.cnki.ysjskx.2024.05.013
LIU Hangchen, CHEN Haiting, LIU Ruohan, ZHAO Pengbo, ZHAO Zhipeng, LIU Junqi, HU Hao. First-principles design of cation-doped H-Nb2O5 negative electrode material and its electrochemical performance investigation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 732-739. DOI: 10.13264/j.cnki.ysjskx.2024.05.013
Citation: LIU Hangchen, CHEN Haiting, LIU Ruohan, ZHAO Pengbo, ZHAO Zhipeng, LIU Junqi, HU Hao. First-principles design of cation-doped H-Nb2O5 negative electrode material and its electrochemical performance investigation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 732-739. DOI: 10.13264/j.cnki.ysjskx.2024.05.013

第一性原理设计阳离子掺杂H-Nb2O5负极材料及其电化学性能研究

基金项目: 

国家自然科学基金资助项目 52002119

河南省博士后科研项目 HN2022040

河南省博士后科研项目 HN2022048

河南科技大学博士启动基金资助项目 13480095

河南科技大学博士启动基金资助项目 13480096

详细信息
    通讯作者:

    胡浩(1989— ),博士,副教授,主要研究方向为新能源高密度储能电池材料。E-mail:huhao@haust.edu.cn

First-principles design of cation-doped H-Nb2O5 negative electrode material and its electrochemical performance investigation

  • 摘要:

    铌基氧化物负极材料因具有优异的锂离子扩散速率而备受关注,但铌基氧化物导电性较差,严重限制了其大规模应用。本研究运用第一性原理计算方法,采用VASP软件包结合Hubbard修正的广义梯度近似(GGA + U)计算了不同阳离子掺杂对H-Nb2O5的态密度带隙的影响,结果表明,掺杂Ni2+、Co2+、Ag+能改善H-Nb2O5电子结构,将其带隙由纯相H-Nb2O5的0.35 eV分别降低至0、0.1、0.17 eV。在此基础上,采用固相法分别制备了掺杂Ni2+、Co2+、Ag+的H-Nb2O5,并对其结构及电化学储锂机理进行了研究。其中,Ni2+掺杂H-Nb2O5展现出较优的电化学性能,在2.5 C条件下放电比容量达203 mAh/g;在50 C条件下容量仍保持在89 mAh/g;25 C条件下3 000次循环中每次容量损失率仅为0.002 1% 。锂离子迁移势垒计算结果表明,Ni2+掺杂H-Nb2O5的迁移势垒为0.674 eV,远低于纯相H-Nb2O5的0.847 eV。

    Abstract:

    Niobium-based oxide negative electrode materials have attracted much attention because of their excellent lithium-ion diffusion rate, but their poor electrical conductivity severely limits their large-scale application. In this study, the effects of different cationic doping on the bandgap of H-Nb2O5 state density were calculated by using the VASP software package and Hubbard modified generalized gradient approximation (GGA + U). The results show that Ni, Co and Ag can improve the electronic structure of H-Nb2O5 and reduce the band gap compared to pure phase H-Nb2O5 from 0.35 eV to 0, 0.13 and 0.17 eV, respectively. On this basis, H-Nb2O5 doped with Ni, Co and Ag was prepared using the solid phase method, and its structure and electrochemical lithium storage mechanism were studied, respectively. The experimental results show that Ni-doped H-Nb2O5 exhibits the best electrochemical performance among the doped H-Nb2O5 anodes. The specific discharge capacity reaches 203 mAh/g at 2.5 C. The capacity remains at 89 mAh/g at 50 C. The capacity loss rate per 3000 cycles is only 0.002 1% under the 25 C condition. The calculation results show that the migration barrier of Ni-doped H-Nb2O5 is 0.674 eV, much lower than 0.847 eV of pure H-Nb2O5.

  • 球磨机的应用领域涉及到各行业,包括粉末冶金、化工、水泥、建筑、医药以及国防工业等部门,其中在粉末冶金工业中的球磨工艺中应用尤为广泛[1].球磨机的球磨过程,主要是靠球磨机内介质与物料间相互作用来实现[2].而混合料的研磨效率与球磨机转速、研磨体数量、形状、尺寸、球料比、固液比等有关[3].本文旨在研究新型七面体球磨介质对球磨效率及合金组织性能的影响.一般过去球磨介质为圆球形,它的优点是易滚动,效率高,磨损均匀,制造容易;而sandvik及我国株洲钻石切削刀具有限公司都采用圆柱体状研磨介质[4];为了进一步缩短生产周期,提高研磨效率,研究设计了一种新型七面体球磨介质.本文通过使用不同的球磨介质在相同条件下制备中颗粒WC-10 %Co混合料,分析其球磨效率和球磨方式,并通过经压制烧结后的合金性能来阐述不同的球磨介质的研磨效率及对合金组织性能的影响.

    本实验所用的球磨介质成分为YG10研磨棒,球形研磨球尺寸参数为φ7;七面体研磨棒参数为:φ7.

    此次试验所用的原材料WC为公司自产原料,Co粉和Ta(Nb)C为市面所购.于小型悬臂式球磨机中进行湿磨.第1组添加1 kgWC,湿磨后经真空干燥后用0.212 mm筛网进行过筛,对其进行粒度分析和扫描电镜分析,并研究其球磨方式;第2组设计总碳为5.47 %,添加2.0 %石蜡,各项成分见表 1,湿磨后经真空干燥后用0.212 mm筛网进行过筛,压制成20 mm×6.5 mm×5.25 mm试样条,每组15个,放于烧结炉的同一位置进行烧结,检测其各项性能.

    表  1  中颗粒WC-10%Co原料粉末的组成
    原材料 总碳/% 费氏粒度/μm 配料量/g
    WC 6.15 1.79 866.4
    Co 0 1.17 100
    Ta (Nb) C 7.08 1.28 20
    W 0 1.27 13.6
    下载: 导出CSV 
    | 显示表格

    球磨工艺参数:球料比6:1,球磨时间48 h,转速63 r/min,酒精375 mL,研磨棒6 kg.

    用激光粒度分布仪去测定其粒度组成,用德国蔡司-电子扫描电镜观察其组织形貌,用全自动磁饱和强度测量仪测量其钴磁,用矫顽磁力测量仪测量其矫顽磁力,用依工-显微硬度仪测量其硬度.

    2种球磨介质球磨后的WC粉末经干燥,用激光粒度分布仪去测其粒度分布,结果如图 1图 2所示.

    图  1  七面体研磨介质制备粉末激光粒度分析结果
    图  2  球形球磨介质制备粉末激光粒度分析结果

    根据图 1图 2激光粒度分布结果可以看出,七面体球磨介质制备的粉末50 %粒度低于0.93 μm,90 %粒度低于1.453 μm;而用球形球磨介质制备的粉末50 %粒度低于1.240 μm,90 %的粉末粒度低于1.785 μm,且2种球磨介质制备的粉末的均匀性相近.对粉末进行取样扫描电镜分析,结果如图 3.

    图  3  WC经不同球磨介质球磨后SEM照片

    对比图 3中2种球磨介质制备的粉末扫描电镜结果可知,用球形球磨介质制备的粉末粒子的分散性较好,颗粒之间很少发生团聚,而用七面体球磨介质制备的WC粉末出现较多的细粉,且这些细粉黏附在大颗粒WC表面或者团聚在一起.这类粉末具有较高的晶格畸变能,活性也较高[5].分析球磨介质在球磨机中的相互作用方式,结果如图 4.

    图  4  2种球磨介质在球磨过程中的相互作用方式

    根据图 4可以看出,由于七面体球磨介质存在棱角,在球磨过程中,除了大量的面接触外,还存在一些点与面的接触,这种冲击式的接触是给粉末大量活性的主要原因,分析认为,由于七面体球磨介质在球磨过程中除了面接触球磨方式外,还存在点与面间的接触,这种冲击方式使粉末颗粒中晶粒存在许多结晶缺陷,如空隙、畸变、夹杂等.同时,由于比表面积的增大,表面就蕴藏高的表面能,对气体、液体或微粒表现出了极强的吸附能力[6];而球形球磨介质的接触方式表面为点接触,由于球形易滚动,所以这样不容易给粉末带来过多的活性,因此粉末的分散性也更好.

    表 2为2种球磨介质经湿磨-压制-烧结后的4项检测平均值,其中编号A为七面体球磨介质,编号B为球形球磨介质.

    表  2  两种球磨介质球磨后合金的性能检测结果
    编号 钴磁/% 矫顽磁力/(×10-4T) HRA HV 密度/(g·cm-3)
    A 8.38 244.5 90.9 1498 14.44
    B 8.66 221.9 90.7 1480 14.42
    下载: 导出CSV 
    | 显示表格

    表 2可以看出,经七面体球磨介质制备的混合料经烧结后,矫顽磁力和硬度均高于球形球磨介质球磨后的合金,在合金钴含量一定情况下,硬质相粒度越细,黏结相的平均自由程度越小,合金的矫顽磁力就越大[7-8],因此可以说明七面体的合金粒度更为细小;然而用七面体球磨介质制备的混合料的钴磁明显低于球形球磨介质,分析认为是七面体球磨介质生产的粉末吸附了更多的氧,以致在烧结过程中带走了C元素所致;WC-Co硬质合金的硬度与合金中WC的晶粒度与硬度、黏结相的含量与硬度等微观组织结构的特征参数有关[9-10],而合金的钴含量为一定,因此说明七面体球磨介质制备的混合料经相同烧结工艺后晶粒度要小于用球形球磨介质制备的合金.2种不同的球磨介质球磨的料的钴磁分布如图 5所示.

    图  5  不同球磨介质对合金钴磁波动的影响

    图 5显示,七面体球磨介质制备的混合料经烧结后合金的钴磁波动较七面体的大,但也处于合理范围之内.分析认为由于七面体球磨介质在球磨过程中产生了更多的具备较高活性的细粉,具备更大的表面能,化学活泼性也随之增大,使粉末在球磨及存放过程中增氧的趋势加大[11],从而导致合金的钴磁波动相对较大,且经烧结后合金的钴磁也较球形球磨介质生产的合金钴磁低,在生产中增加了0.2 %的石蜡便可较好的包覆粉末,阻止粉末氧化.

    此外,粉末体在液相中的溶解度和溶解速度都比致密态时大,而且粉末愈细,差别愈大.这就是合金在烧结过程中碳化钨晶粒因溶解析出而长大的动力[10, 12].

    对合金进行金相分析,观察合金的晶粒度大小及分布情况,结果见表 3.

    表  3  不同球磨介质生产的合金金相检测结果
    试样号 未浸蚀放大100倍检验结果 浸蚀1500倍
    孔隙度 孔洞/(个·cm-3) 石墨 WC平均粒度分布/μm 钴相/μm 显微石墨或η1相 γ相平均晶粒度/μm
    A类 B类 25~75 μm 75~125 μm > 125 μm C类
    七面体-1 A02 B00 0 0 0 C00 0.8 < 1.0 E00 < 1.5
    球形-1 A02 B00 0 0 0 C00 0.8 < 1.0 E00 < 1.5
    下载: 导出CSV 
    | 显示表格

    结合表 3图 6可以看出,经不同球磨介质球磨后的组织WC晶粒处于同一级别,没有WC聚集长大现象,而晶体形态不但受内部结构的对称性、结构组元间键力和晶体缺陷等因素的制约,对于硬质合金而言,合金中WC形貌主要取决与WC固相颗粒与液态黏结相之间的界面能[13-14].在烧结过程中Ta(Nb)C吸附在碳化物颗粒的表面,降低了WC的表面能,从而降低了WC在液相中的溶解度[15],使合金晶粒更细小、均匀.因此,结合前面的四项检测结果,根据七面体球磨介质球磨效率高但易产生细粉的特点,设计使用七面体球磨介质制备原材料费氏粒度大于5.0 μm的混合料,这样可以缩短生产周期;根据球形球磨介质易滚动、分布分散的特点使用球形球磨介质制备原材料费氏粒度为0.8~5.0 μm的混合料.

    图  6  合金经烧结后的组织金相图

    1)与传统的球形球磨介质的点接触球磨方式相比,七面体球磨介质的面接触的球磨方式能提高混合料的球磨效率,但是七面体球磨介质在球磨过程中存在一些点与面的接触,以致制备的粉末活性更高.

    2)用七面体球磨介质制备的粉末由于具备更高的活性,具备更大的表面能,化学活泼性也随之增大,使粉末在球磨及存放过程中增氧的趋势加大,从而导致合金的钴磁波动相对较大.

    3)七面体球磨介质适合用于制备原材料费氏粒度大于5.0 μm的混合料,球形球磨介质适合用于制备原材料费氏粒度为0.8~5.0 μm的混合料.

    于桂红
  • 图  1   H-Nb2O5晶胞结构主视图(a)和侧视图(b);阳离子掺杂后H-Nb2O5晶胞结构主视图(c)和侧视图(d)

    Fig  1.   Main view (a) and side view (b) of H-Nb2O5 cell structure; main view (c) and side view (d) of cation-doped H-Nb2O5 cell structure

    图  2   H-Nb2O5及不同金属阳离子掺杂后H-Nb2O5的态密度:(a)纯相H-Nb2O5;(b)Ni@Nb2O5;(c)Cu@Nb2O5;(d)Mn@Nb2O5;(e)Co@Nb2O5;(f)Cd@Nb2O5;(g)Ag@Nb2O5;(h)Fe@Nb2O5;(i)Zn@Nb2O5

    Fig  2.   State density of H-Nb2O5 doped with different metal cations: (a) pure phase H-Nb2O5; (b) Ni@Nb2O5; (c) Cu@Nb2O5; (d) Mn@Nb2O5; (e) Co@Nb2O5; (f) Cd@Nb2O5; (g) Ag@Nb2O5; (h) Fe@Nb2O5; (i) Zn@Nb2O5

    图  3   (a)纯相H-Nb2O5的SEM图;(b)纯相H-Nb2O5、Ni@Nb2O5、Co@Nb2O5、Ag@Nb2O5的XRD图;(c-n)Ni@Nb2O5、Co@Nb2O5、Ag@Nb2O5的SEM图和EDS元素图谱

    Fig  3.   (a)SEM diagram of pure phase H-Nb2O5; (b) XRD patterns of pure phase H-Nb2O5, Ni@Nb2O5, Co@Nb2O5, Ag@Nb2O5; (c-n) SEM and EDS element Atlas images of Ni@Nb2O5, Co@Nb2O5, Ag@Nb2O5

    图  4   H-Nb2O5掺杂Ni、Co、Ag前后:(a)在频率范围0.1~100 kHz的EIS图谱;(b)在0.5 mV/s扫速下,1.0~3.0 V电压范围的CV曲线;(c)1~50 C电流密度下的倍率性能;(d)在2.5 C时的循环性能;(e)在25 C电流密度下的长循环性能

    Fig  4.   After doping Ni, Co and Ag with H-Nb2O5: (a) EIS spectra in the frequency range 0.1-100 kHz; (b) CV curve results from 1.0 V to 3.0 V voltage range at 0.5 mV/s sweep speed; (c) magnification performance at 1-50 C current density; (d) cycle performance at 2.5 C; (e) long cycle performance at 25 C current density

    图  5   Ni@Nb2O5 (a),Co@Nb2O5 (b)和Ag@Nb2O5(c)的差分电荷密度;Ni@Nb2O5(d),Co@Nb2O5(e)和Ag@Nb2O5(f)的电荷密度

    Fig  5.   Differential charge density diagram of Ni@Nb2O5 (a),Co@Nb2O5 (b)and Ag@Nb2O5(c); charge density diagram of Ni@Nb2O5(d),Co@Nb2O5(e) and Ag@Nb2O5(f)

    图  6   模拟Li+在Ni@Nb2O5迁移的主视图(a)和侧视图(b);(c)H-Nb2O5和(d)Ni@Nb2O5的锂离子扩散能垒图

    Fig  6.   Main view (a) and side view (b) of simulated Li+ migration at Ni@Nb2O5; lithium-ion diffusion energy barrier diagram of H-Nb2O5(c) and Ni@Nb2O5(d)

  • [1]

    DENG S, ZHU H, LIU B, et al. Synergy of ion doping and spiral array architecture on Ti2Nb10O29: a new way to achieve high‐power electrodes[J]. Advanced Functional Materials, 2020, 30(25): 2002665.

    [2]

    DING H, SONG Z, ZHANG H, et al. Niobium-based oxide anodes toward fast and safe energy storage: a review[J]. Materials Today Nano, 2020, 11: 100082.

    [3]

    YANG Y, ZHAO J B. Wadsley-roth crystallographic shear structure niobium-based oxides: promising anode materials for high-safety lithium-ion batteries[J]. Advanced Science, 2021, 8(12): 2004855.

    [4]

    TAO R M, ZHANG T Y, TAN S S, et al. Insight into the fast-rechargeability of a novel Mo1.5W1.5Nb14O44 anode material for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(36): 2200519.

    [5]

    SHEN F, SUN Z T, HE Q G, et al. Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage[J]. Materials Horizons, 2021, 8(4): 1130-1152.

    [6]

    YANG C, YU S, LIN C F, et al. Cr0.5Nb24.5O62 Nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage[J]. ACS Nano, 2017, 11(4): 4217-4224.

    [7]

    LEI C R, QIN X, HUANG S Y, et al. Mo-doped TiNb2O7 microspheres as improved anode materials for lithium-ion batteries[J]. Chem Electro Chem, 2021, 8(17): 3379-3383.

    [8]

    WU Z C, GUO M, YAN Y T, et al. Reducing crystallinity of micrometer-sized titanium-niobium oxide through cation substitution for high-rate lithium storage[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(22): 7422-7430.

    [9]

    YAN L T, RUI X H, CHEN G, et al. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage[J]. Nanoscale, 2016, 8(16): 8443-8465.

    [10] 凡杰, 谢刚, 田林, 等. ZnS掺杂Fe2+电子结构第一性原理计算及对矿物浸出的影响[J].有色金属科学与工程, 2021, 12(2): 1-7.
    [11]

    CHEN X L, CUI P, CHEN X L, et al. W6+-doped Nb2O5 as high-rate anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 967: 171846.

    [12]

    FU Q F, ZHU X Z, LI R J, et al. A low-strain V3Nb17O50 anode compound for superior Li+ storage[J]. Energy Storage Materials, 2020, 30: 401-411.

    [13]

    YUAN T, SOULE L K, ZHAO B T, et al. Recent advances in titanium niobium oxide anodes for high-power lithium-ion batteries[J]. Energy & Fuels, 2020, 34(11): 13321-13334.

    [14]

    ZHENG Y, QIU W J, WANG L J, et al. Triple conductive wiring by electron doping, chelation coating and electrochemical conversion in fluffy Nb2O5 anodes for fast-charging Li-ion batteries[J]. Advanced Science, 2022, 9(25): 2202201.

    [15]

    SHAN L T, WANG Y R, LIANG S Q, et al. Interfacial adsorption-insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery[J]. Information Material, 2021, 3(9): 1028-1036.

    [16]

    SPADA D, ARAMINI M, FITTIPALDI M, et al. Spectroscopic techniques and DFT calculations to highlight the effect of Fe3+ on the properties of FeNb11O29, anode material for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2022, 126(9): 4698-4709.

    [17]

    PREEFER M B, SABER M, WEI Q L, et al. Multielectron redox and insulator-to-metal transition upon lithium insertion in the fast-charging, wadsley-roth phase PNb9O25[J]. Chemistry of Materials, 2020, 32(11): 4553-4563.

    [18] 李立清, 周润, 龙慧婷, 等. 基于密度泛函理论的氢氧化镁(101)表面改性机理研究[J]. 有色金属科学与工程, 2023, 14(4): 447-453.
    [19]

    CHEN H T, CHENG H Y, LIU H C, et al. Design of phase interface and defect in niobium-nickel oxide for ultrafast Li-ion storage[J]. Journal of Materials Science & Technology, 2023, 147(1): 145-152.

    [20]

    TIAN K D, WANG Z X, DI H X, et al. Superimposed effect of La doping and structural engineering to achieve oxygen-deficient TiNb2O7 for ultrafast Li-ion storage[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10478-10488.

    [21]

    CHEN Y, PU Z Y, LIU Y B, et al. Enhancing the low-temperature performance in lithium ion batteries of Nb2O5 by combination of W doping and MXene addition[J]. Journal of Power Sources, 2021, 515(1): 230601.

    [22]

    FU Q F, LI R J, ZHU X Z, et al. Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62[J]. Journal of Materials Chemistry A, 2019, 34(7): 19862-19871.

    [23]

    LIU Y Q, YAN Y, LI K, et al. A high-areal-capacity lithium-sulfur cathode achieved by a boron-doped carbon-sulfur aerogel with consecutive core-shell structures[J]. Chemical Communications, 2019, 55(8): 1084-1087.

    [24]

    XIA R, ZHAO K N, KUO L Y, et al. Nickel niobate anodes for high rate lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(1): 2102972.

    [25]

    SHEN F, SUN Z T, ZHAO L, et al. Triggering the phase transition and capacity enhancement of Nb2O5 for fast-charging lithium-ion storage[J]. Journal of Materials Chemistry A, 2021, 9(25): 14534-14544.

    [26] 林传金,郑锋,朱梓忠. 锂离子电池正极材料Li2FeO2的电子结构性质和Li扩散[J]. 物理学报, 2019, 68(15): 140-147.
图(6)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  7
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 修回日期:  2023-09-28
  • 刊出日期:  2024-10-30

目录

/

返回文章
返回