Advances in anode modification strategies for aqueous zinc ion batteries
-
摘要:
水系锌离子电池因其安全性高、离子导电率高、理论比容量高、成本低廉等优点,成为一类颇有前景的规模化储能材料。然而,锌负极在充放电过程中难以避免会出现枝晶生长和析氢腐蚀等棘手问题,严重制约了水系锌离子电池的循环寿命与实际应用的推广。本文首先分析了上述关键问题的成因和基本机制,系统阐述了目前锌负极的改性策略的4个方向,包括:负极材料构筑、涂层表面钝化、隔膜改性、电解液优化,重点论述了4类改性策略的设计要点与改性原理,并对锌负极的发展趋势进行了展望,为推动高性能水系锌离子电池发展提供参考。
Abstract:Aqueous zinc ion batteries have become a promising large-scale energy storage technology because of their high safety, high ionic conductivity, high theoretical specific capacity, and low cost. However, the improvement of cycle life and the promotion of practical applications are greatly limited by dendrite growth, hydrogen evolution, and corrosion reactions in the zinc anode during the charging and discharging process in aqueous zinc-ion batteries. First analyzing the causes and basic mechanisms of these above key issues, this paper then systematically expounded on four aspects of the modification strategies of zinc anodes, including anode material construction, coating surface passivation, separator film modification, and electrolyte optimization. Moreover, this study took the design points and modification principles of the four types of modification strategies as priority and prospected the development trend of zinc anodes, providing a powerful reference for promoting the development of high-performance aqueous zinc-ion batteries.
-
Keywords:
- aqueous zinc ion battery /
- zinc anode /
- zinc dendrite /
- coating /
- separator film /
- electrolyte
-
0 引言
江西德兴铜矿大山选矿厂原矿工段有两条进口的运输钢芯胶带,每条胶带长逾1 100m,由于运距长,坡度大,每条皮带要由3台900HP电动机共同驱动, 其控制精度要求高, 控制系统复杂。原设计为单机PLC联锁控制,在此基础上,选用Rockwell RSView32工控组态软件配以Rockwell A -B的PLC-5和SLC500组成了自动控制系统。工控组态软件是利用系统软件提供的组态工具,通过简单形象的组态工作,即可实现所需的软件功能,在众多的工控组态软件中,Rockwell RSView32工控组态软件以其独有的特点成为具有代表性的组态软件。
1 RSView32工控组态软件功能分析
RSView32工控组态软件是美国Rockwell公司生产的基于标准PC平台上的组态软件,它以MFC(微软基础级)、COM(元件对象)技术为基础,运行于Windows NT环境下的MM(I人机接口)软件。它的主要功能可以从以下几个方面进行分析。
1.1 组态软件功能完善
Rockwell RSView32工控组态软件提供了工业标准数学模型库和控制功能库,组态模式灵活,能满足用户所需的各种测控要求。RSView32对测控信息进行显示、计算、分析、存储、调用、打印等,操作界面生动灵活,安全体系可靠。
1.2 丰富的图形显示组态
Rockwell RSView32工控组态软件提供给用户丰富的作图工具和编辑工具,提供了大量的工业设备图形库、电气及仪表图符,工控必备的趋势图、历史曲线、数据分析窗口等,调用十分方便,它提供了极其友好的图形化用户界面,包括一整套Windows风格的窗口、弹出式菜单、按钮、消息区、工具栏、滚动条等,画面丰富多彩。汉化版的中文界面,实现了汉字的录入、编辑和显示。
1.3 强大的通信功能和良好的开放性
Rockwell RSView32工控组态软件向下可以通过RSLink与数据采集硬件通信,向上通过Ethernet与管理网互联,对于DDE或OPC数据源,“标记/数值”对的列表被传给OPC或DDE服务器。
RSView32能与多种通信协议互联,支持多种硬件设备,如Allen Bradley的PLC,Modicon的PLC,Siemens的PLC,GE的PLC,Hitachi的PLC,Omron的PLC等。RSView32能支持各类测控硬件设备,还支持HTML,可以浏览Internet,为国际间合作、网际间事件处理、远程监控提供了有利的工具。
1.4 多任务的软件运行环境与数据库管理及资源共享
Rockwell RSView32工控组态软件充分利用面向对象的技术和ActiveX动态联接库技术,极大地丰富了控制系统的显示画面和编程环境,从而方便灵活地实现多任务操作。ActiveX控件为第三方开发的软件,RSView32通过它的属性、事件和方法来使用它所提供的功能。具体应用为在指定点嵌入一个ActiveX控件,然后设定其属性或控件事件,该控件就可以与RSView32交互作用了,信息通过RSView32的标记进行传递。
Windows为RSView32应用软件提供接口,利用DDE技术,RSView32与Windows应用程序进行数据交换,实现数据和信息共享,从而为用户提供更为集中的数据操作环境,实现信息集中管理,并向上层系统提供开放式数据库接口。
1.5 控制点的规模及性价比
测量、控制点的数量是衡量组态软件的重要参数。RSView32工控组态软件有多达7 000个标记的规模,并有强大的图形工具、丰富的菜单命令、完善的测量及控制管理。用户可以根据实际工程选择合适的标记数量。点多则价高。RSView32工控组态软件将PLC融入DCS系统,使PLC系统具有DCS功能,实现了逻辑量、模拟量、顺序控制等控制策略的集成,极大地提高了系统的性能价格比。
2 RSView32工控组态软件在大型运矿胶带控制系统中的应用
2.1 系统简介
德兴铜矿是一个日处理矿石9万t的矿山,大山选矿厂担负着全矿日处理矿量的2/3,其原矿运输使用两条逾1 100m长的钢芯胶带运输系统运送矿石,工程采用分期建设分期投产方式,一期工程的控制系统设计为日本三菱PLC及相应的远程I/O站组成的PLC自动控制系统,自投产以来至今运行10多年,设备接近使用寿命,故障率升高,相应型号的PLC模块也因淘汰而无法采购,受设备技术的局限性及备件因素的影响,系统维护及使用威胁生产的正常进行。根据大山厂技术改造方案,二期工程设计使用了Rockwell-AB公司的PLC-5,对一期工程,则采用美国Rockwell-AB公司的SLC-500系列PLC对其进行系统改造, 并采用RSView32工控组态软件对两套运矿系统进行上层开发和应用。改造措施分4个部分进行:①硬件配置。②数据采集。③逻辑编程及调试。④实行实时监控系统组态、运行。
2.2 硬件配置
系统的控制方式为中央集中控制。在改造中,中央控制室里的系统上位机选用研华IPC610/586工控机,30G,128M,预装Windows NT操作系统,21吋彩显,1784-PKTX通迅卡,报表打印机等组成操作员站,普通商用机预装Windows NT操作系统组成工程师站。一期现场的系统选用的硬件是SLC5/04处理器,头部与尾部各配置一台,型号均为1747-L541,在组成系统时有很大的灵活性和较强的处理能力,另在尾部的操作现场配置了一台操作员终端Panelview550,控制器之间通过DH+网络进行通讯。二期系统由于使用的是Rockwell-AB公司的PLC-5/40E处理器及1771-ASB远程I/O适配器,处理器只需重设站点号,即可融入系统,其他配置不变。上位工程师计算机作为00站点,通过PKTX卡,连接到DH+网络,通过网络,上位计算机与各站点进行数据通讯,对系统进行设置、编程、管理和控制。操作员计算机作为01站点,通过PKTX卡,连接到DH+网络,对系统进行操作和监控。见图 1。
2.3 数据采集
数据采集系统分模拟量采集和开关量采集。模拟量采集由现场传感器(料位计、流量计、电压变送器、电流变送器等)采集DC4-20ma或DC0-10V的标准信号输入PLC的模拟量输入模块,如头部矿堆料位、电动机运行电流等。开关量采集是各种需要的接点(按扭、继电器、各种辅助开关、行程开关等接点)输入PLC的开关量输入模块,如电动机运行状态、系统的自动和手动选择等。
数据采集系统是运矿胶带控制系统改造中工作量最大,决定系统复杂程度的重要环节,改造设计时对模拟量和开关量采集的确定要做全面的技术经济分析。
2.4 逻辑编程及调试
为节省时间,逻辑编程在改造项目规划设计时同时进行,两期系统根据改造前的PLC程序,在保正安全前提下,对原程序进行了合理修改。编程有很多技巧需要撑握,这依靠工控知识和经验的长期积累。
2.4.1 软件安装
在进行编程前,必须安装RSlogix500和RSlogix5及RSView32(带RSLink)软件,还有Offic e2000应用软件以及PKTX通迅卡驱动软件等,RSlogix500为SLC-500系列控制器的编程软件,RSlogix5为PLC-5系列控制器的编程软件,具体安装参见软件使用手册,这里不详细介绍。
2.4.2 联机及通讯
工程师站、操用员站通过PKTX通迅卡与PLC-5和SLC500组成DH+网络联成开放式系统,通讯调试分控制器组态调试、传输测试、程序上装下载测试等。在一期系统的SLC500的应用中,运矿胶带的头部与尾部相距1 200m,为保证通讯的可靠,利用MSG指令,在同一数据文件的同一位,头部SLC500读0置1,尾部SLC500读1置0,置位时间超时报警,即只有通讯中断置位时间才会超时。
2.5 RSView32工控组态软件应用
应用组态软件开发了系统监控显示画面10余幅,有系统总图、各设备分图、故障报警图等,其特点是图形形象逼真,操作界面简易,有完善的显示、计算、分析、存储、调用、打印等功能,运行参数(电压、电流、矿量、料位等)显示于画面上。各种显示图形的输入参数均来自项目管理器中的标签,标签与现场I/O相对应。编辑器提供有大量的图形库供开发人员选用,操作人员可用鼠标或键盘进行操作。
2.5.1 监控功能的实现
设置监控画面,反映各设备的运行、停止、故障状况;显示各过程量(润滑系统油温、张紧装置拉力等)的当前值;随时可实时修改给矿量的大小。
设置趋势图显示、归档和历史数据打印画面。用棒图和趋势曲线显示主电机温度、电流等主要参数的历史趋势和实时趋势。
设置自动归档的故障报警画面,将各个设备的故障信息集中显示并自动产生报表输出。
2.5.2 应用趋势及曲线和历史数据库
RSView32可在任何时间方便地选择建立趋势的值及其范围、取样周期和屏幕尺寸等。趋势曲线变化易于辨识,在X及Y轴上有明确标出刻度,并可以显示平均、最大、最小状态下的趋势曲线。曲线的特征与趋势的特性相同,还可以满足在任何给出点显示X及Y轴坐标,可放大显示一较短时间段,或缩小显示一较长时间段。
所有现场设备传来的数据根据用户定义的时间自动存入历史数据文件,用户可自定义查询条件。如可根据时间进行查询,从历史文件中取得相应的历史数据作报表或趋势曲线的显示或打印。
2.5.3 应用报警功能
当现场的模拟量信号,如温度、压力、高料位或低料位报警时,报警可立即进入RSView32实时数据库进行打印和相应的联锁动作,弹出报警画面,报警随即进入历史数据库,可长期存储和根据用户的需求进行查询。报警记录可长期存档,便于后期深入分析。应用时将其中故障报警点属性设为隐藏,故障时配合蜂鸣器闪烁显示。
2.5.4 应用报表及打印功能
系统将利用RSView32提供的报表组件为生产提供定义好的表格,在RSView32中制作报表和报告。在打印前可以修改、预览。
RSView32可将记录的数据送入Microsoft Excel,根据电子秤输出的信号开发了单班矿量累积、显示报表,即用VB6.0做一可执行程序,在RSView32中用AppStart命令激活此程序,再用AppActive命令推至前台执行,打开Excel表并激活,显示单班矿量及累积运矿量。
2.6 安全设置
在系统组态好并投入正常运行后,RSView32可以进行启动设置(计算机一启动即进入实时监控画面),加入安全等级,设置操作员密码。使用RSView32 Tools中的NT4.0 Desktop Lock可以禁止重启计算机。
3 结语
整个改造项目从系统选型、设备购置到开发调试和投入运行仅4个月就完成,从2004年运行至今无异常,生产实践证明,RSView32工控组态软件运行可靠,画面清晰,易于维护,便于操作,满足了生产工艺的要求,是一款很好的工控组态软件。根据工艺要求实现了设备相互联锁,设备的启停及运行操作和工艺参数的修改在中控室即可完成,完整的故障信息报表可及时发现系统的某一环节故障,减少系统的故障停机时间。保障生产顺利进行,提高了监控与管理水平。
赵中波 -
图 3 负极的结构和电化学表征:(a)DCP-Zn负极的构筑和电化学测试[37];(b)DCP-Zn-30对称电池在0.5 mA/cm2的恒流循环性能,插图为放大后的电压分布[37];对称CC/Zn和AgNPs@ CC/Zn电池的电压时间分布;(c)电流密度为2 mA/cm2,容量为2 mAh/cm2[38];(d)电流密度为10 mAh/cm2,容量为5 mAh/cm2,插图为电极循环后的SEM像[38]
Fig 3. Structural and electrochemical characterizations of negative electrodes: (a) construction and electrochemical tests of the DCP-Zn material[37]; (b) cycling performance of DCP-Zn-30 symmetric cell at 0.5 mA/cm2 with inset showing the voltage distribution after different cycles[37]; Voltage-time distributions of symmetric CC/Zn and AgNPs@ CC/Zn cells; (c) at the current density and capacity of 2 mA/cm2 and 2 mAh/cm2[38];(d) 10 mAh/cm2 and 5 mAh/cm2 with inset showing SEM image after electrode cycling[38]
图 4 涂层改性机理和性能测试:(a)裸锌和涂覆锌的示意[51];(b)在0.5 mA/cm2的电流密度下PA涂层锌板和裸锌板对称锌电池的长期恒流循环[51];(c)裸Zn和PANZ@Zn电极上枝晶形成过程示意[54];(d)Zn||Zn和PANZ@Zn||PANZ@Zn对称电池在1 mA/cm2固定容量为1 mAh/cm2时的电压-时间曲线[54]
Fig 4. Coating modification mechanisms and performance tests: (a) schematic diagram of bare and coated Zn[51]; (b) long-term constant-current cycling of symmetric Zn cells using PA-coated and bare Zn-plate at a current density of 0.5 mA /cm2[51]; (c) schematic diagram of dendrite formation process on bare Zn and PANZ@Zn electrodes[54]; (d) voltage-time curves of Zn||Zn and PANZ@Zn||PANZ@Zn symmetric cells at 1 mA/cm2 with the fixed capacity of 1 mAh/cm2[54]
图 5 隔膜的结构和电化学表征:(a)剥离/电镀过程中,3种隔膜对锌箔枝晶生长的影响示意[68];(b)过滤膜作为隔膜的锌箔的SEM图像[68],插入的是过滤膜作为隔膜的循环后锌箔照片;(c)在5 A/g下使用不同隔膜的Zn//NaV3O8·1.5H2O全电池的循环性能[68];使用CG和纤维素隔膜的锌对称电池的循环稳定性;(d)在2 mA/cm2的电流密度下[69];(e)在20 mA/cm2的电流密度下[69]
Fig 5. Structural and electrochemical characterizations of separator film: (a) schematic diagram of the effect of three separator films on the dendrite growth of Zn foil during stripping/plating[68]; (b) SEM image of Zn foil with filter membrane as separator film[68], The inset is a digital photograph of cycled zinc foil with filter membrane as separator film; (c) cycling performance of Zn//NaV3O8·1.5 H2O full cell with different separator films at 5 A/g[68]; cycling stability of zinc symmetric cells with CG and cellulose separator film; (d) at a current density of 2 mA/cm2[69]; (e) at a current density of 20 mA/cm2[69]
图 6 电解液对锌负极的影响机制及其电化学行为:(a) 分别为添加和不添加季铵化合物的2 mol/L ZnSO4电解液中,负极沉积Zn过程的演变示意[74];(b)添加Et2O的锌负极在剥离/电镀循环过程中的演变示意[75];(c)添加Et2O的电解液中Zn-MnO2电池在5 A/g的长期循环性能[75]
Fig 6. The influence mechanisms of electrolytes on zinc anodes and their electrochemical behaviors: (a) schematic diagram of Zn deposition process in 2 mol/L ZnSO4 electrolyte with and without addition of quaternary ammonium[74]; (b) schematic diagram of the morphological evolution of the Zn anode with and without Et2O addition during the stripping/plating cycle[75]; (c) long-term cycling performance of the Zn-MnO2 cell with Et2O addition at 5 A/g[75]
表 1 不同负极材料的测试条件及性能
Table 1 Test conditions and performance of different negative electrode materials
负极材料 电压滞后 循环性能 参考文献 DCP-Zn 60 mV (0.5 mA/cm2) 1 400 h (0.5 mA/cm2) [37] AgNPs@CC/Zn 56 mV (10 mA/cm2) 480 h (10 mA/cm2) [38] H2Ti3O7⋅xH2O — 1 260 h (200 mA/g) [39] 3D Ti 28 mV (1 mA/cm2) 2 000 h (1 mA/cm2) [40] AB-Zn — 800 h (4 A/g) [41] Zn-Sn 45 mV (1 mA/cm2) 400 h (1 mA/cm2) [42] Zn@Cu NW@Cu foam 39.0 mV (1 mA/cm2) 3 000 h (1 mA/cm2) [43] GiZn 30.4 mV (0.5 mA/cm2) 792 h (0.5 mA/cm2) [44] CuZn@C 25 mV (2 mA/cm2) 500 h (0.5 mA/cm2) [45] Zn-Sn-S slurry — 305 h (1 mA/cm2) [46] 注: “—”表示文献中未提及。表 2 不同涂层材料的测试条件及性能
Table 2 Test conditions and performance of different coating materials
涂层 电压滞后 循环性能 参考文献 PA — 8 000 h (0.5 mA/cm2) [51] PANZ 75 mV (1 mA/cm2) 1 145 h (1 mA/cm2) [54] CG — 1 200 h (2 mA/cm2) [55] Al2O3 36.5 mV (1 mA/cm2) 500 h (1 mA/cm2) [56] NZSP — 1 360 h (0.5 mA/cm2) [57] N-C 64.1 mV (1 mA/cm2) 1 000 h (1 mA/cm2) [58] HZBL — 2 500 h (1 mA/cm2) [59] PDA — 500 h (2 mA/cm2) [60] HfO2 48 mV (0.4 mA/cm2) 750 h (1.0 A/g) [61] HNTs — 650 h (0.5 mA/cm2) [62] TiO2 50 mV (0.4 mA/cm2) 900 h (1.0 A/g) [63] Sn 50 mV (1 mA/cm2) 500 h (1 mA/cm2) [64] 注: “—”表示文献中未提及。 -
[1] ZAMPARDI G, LA MANTIA F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries[J]. Nature Communications, 2022, 13(1): 687.
[2] LIU M Y, YUAN W T, MA G Q, et al. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angewandte Chemie International Edition, 2023, 62(27): e202304444.
[3] SHI Y C, CHEN Y, SHI L, et al. An overview and future perspectives of rechargeable zinc batteries[J]. Small, 2020, 16(23): 2000730.
[4] 陈诺,郭轲,郭玉玺,等. 铝离子电池电解质研究进展[J]. 有色金属科学与工程,2023,14(2):189-201. [5] 刘涛,赖中元,李小成,等. 二氧化钛涂层改性锌负极及其在水系锌离子电池中的应用[J]. 有色金属科学与工程,2023,14(1):51-56. [6] LI H F, MA L T, HAN C P, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587.
[7] VERMA V, KUMAR S, MANALASTAS W, et al. Progress in rechargeable aqueous zinc-and aluminum-ion battery electrodes: Challenges and outlook[J]. Advanced Sustainable Systems, 2019, 3(1): 1800111.
[8] KONAROV A, VORONINA N, JO J H, et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2620-2640.
[9] CHEN Q, JIN J L, KOU Z K, et al. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density[J]. Small, 2020, 16(14): 2000091.
[10] LU Y Z, WANG J, ZENG S Q, et al. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(38): 21678-21683.
[11] RUAN T, LU S, LU J, et al. Unraveling the intercalation chemistry of multi-electron reaction for polyanionic cathode Li3V2(PO4)3[J]. Energy Storage Materials, 2023, 55: 546-555.
[12] LIANG G J, MO F N, JI X L, et al. Non-metallic charge carriers for aqueous batteries[J]. Nature Reviews Materials, 2021, 6(2): 109-123.
[13] DI S L, NIE X Y, MA G Q, et al. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase[J]. Energy Storage Materials, 2021, 43: 375-382.
[14] LIU N N, WU X, ZHANG Y, et al. Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries[J]. Advanced Science, 2020, 7(14): 2000146.
[15] 蓝彬栩,张文卫,罗平,等. 水系锌离子电池负极材料的研究进展[J]. 材料导报,2020,34(13):13068-13075. [16] BLANC L E, KUNDU D, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799.
[17] LI Y G, GONG M, LIANG Y Y, et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts[J]. Nature Communications, 2013, 4(1): 1805.
[18] SHAN L T, YANG Y Q, ZHANG W Y, et al. Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery[J]. Energy Storage Materials, 2019, 18: 10-14.
[19] MAINAR A R, LEONET O, BENGOECHEA M, et al. Alkaline aqueous electrolytes for secondary zinc-air batteries: An overview[J]. International Journal of Energy Research, 2016, 40(8): 1032-1049.
[20] KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 10(1): 1-8.
[21] TAN Y, AN F Q, LIU Y C, et al. Reaction kinetics in rechargeable zinc-ion batteries[J]. Journal of Power Sources, 2021, 492: 229655.
[22] YAMAMOTO T, SHOJI T. Rechargeable Zn|ZnSO4| MnO2-type cells[J]. Inorganica Chimica Acta, 1986, 117(2): L27-L28.
[23] XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935.
[24] LI S W, LIU Y C, ZHAO X D, et al. Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage[J]. Angewandte Chemie International Edition, 2021, 60(37): 20286-20293.
[25] LI S W, LIU Y C, ZHAO X D, et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries[J]. Advanced Materials, 2021, 33(12): 2007480.
[26] WANG T H, LI S W, WENG X E, et al. Ultrafast 3D hybrid-ion transport in porous V2O5 cathodes for superior-rate rechargeable aqueous zinc batteries[J]. Advanced Energy Materials, 2023, 13(18): 2204358.
[27] LIU Y, WU X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries[J]. Journal of Energy Chemistry, 2021, 56: 223-237.
[28] 孙晴,高筠. 水系锌离子电池的最新研究进展[J]. 材料导报,2022,36(17):5-11. [29] YUFIT V, TARIQ F, EASTWOOD D S, et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries[J]. Joule, 2019, 3(2): 485-502.
[30] ZHANG Q, LUAN J Y, TANG Y G, et al. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(32): 13180-13191.
[31] LIU Z, QIN L, LU B, et al. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries[J]. ChemSusChem, 2022, 15(10): e202200348.
[32] GUO N, HUO W J, DONG X Y, et al. A review on 3D zinc anodes for zinc ion batteries[J]. Small Methods, 2022, 6(9): 2200597.
[33] BAYAGUUD A, FU Y P, ZHU C B. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies[J]. Journal of Energy Chemistry, 2022, 64: 246-262.
[34] LI C, XIE X, LIANG S, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc‐ion batteries[J]. Energy & Environmental Materials, 2020, 3(2): 146-159.
[35] HE W, ZUO S, XU X, et al. Challenges and strategies of zinc anode for aqueous zinc-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(5): 2201-2217.
[36] WANG T, LI C, XIE X, et al. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives[J]. ACS Nano, 2020, 14(12): 16321-16347.
[37] GUO W B, CONG Z F, GUO Z H, et al. Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries[J]. Energy Storage Materials, 2020, 30: 104-112.
[38] CHEN T, WANG Y, YANG Y, et al. Heterometallic seed‐mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries[J]. Advanced Functional Materials, 2021, 31(24): 2101607.
[39] LIU Y, ZHOU X M, WANG X, et al. Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries[J]. Chemical Engineering Journal, 2021, 420: 129629.
[40] AN Y L, TIAN Y, XIONG S L, et al. Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries[J]. ACS Nano, 2021, 15(7): 11828-11842.
[41] QIU N, YANG Z, XUE R, et al. Toward a high-performance aqueous zinc ion battery: Potassium vanadate nanobelts and carbon enhanced zinc foil[J]. Letters, 2021, 21(7): 2738-2744.
[42] WANG L Y, HUANG W W, GUO W B, et al. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries[J]. Advanced Functional Materials, 2022, 32(1): 2108533.
[43] FANG Y X, HAN K, WANG Z, et al. Constructing a well-wettable interface on a three-dimensional copper foam host with reinforced copper nanowires to stabilize zinc metal anodes[J]. Journal of Materials Chemistry A, 2023, 11(25): 13742-13753.
[44] LI Y, WU L S, DONG C, et al. Manipulating horizontal Zn deposition with graphene interpenetrated Zn hybrid foils for dendrite-free aqueous zinc ion batteries[J]. Energy & Environmental Materials, 2023, 6(5): e12423.
[45] YUAN G Q, LIU Y Y, XIA J, et al. Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries[J]. Nano Research, 2023, 16: 6881-6889.
[46] YANG Z F, ZHANG Q, LI W B, et al. A semi-solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(3): e202215306.
[47] CUI M W, XIAO Y, KANG L T, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(9): 6490-6496.
[48] DENG C B, XIE X S, HAN J W, et al. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode[J]. Advanced Functional Materials, 2020, 30(21): 2000599.
[49] YUKSEL R, BUYUKCAKIR O, SEONG W K, et al. Metal-organic framework integrated anodes for aqueous zinc-ion batteries[J]. Advanced Energy Materials, 2020, 10(16): 1904215.
[50] ZHOU Z B, ZHANG Y M, CHEN P, et al. Graphene oxide-modified zinc anode for rechargeable aqueous batteries[J]. Chemical Engineering Science, 2019, 194: 142-147.
[51] ZHAO Z M, ZHAO J W, HU Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6): 1938-1949.
[52] ZHENG X H, AHMAD T, CHEN W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries[J]. Energy Storage Materials, 2021, 39: 365-394.
[53] DU W C, ANG E H X, YANG Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2020, 13(10): 3330-3360.
[54] CHEN P, YUAN X H, XIA Y B, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries[J]. Advanced Science, 2021, 8(11): 2100309.
[55] KANG L Z, ZHENG J L, YUAN H D, et al. High performance Zn anodes enabled by a multifunctional biopolymeric protective layer for a dendrite-free aqueous zinc-based battery[J]. Journal of Materials Chemistry A, 2023, 11(25): 13266-13274.
[56] HE H B, TONG H, SONG X Y, et al. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(16): 7836-7846.
[57] LIU X Y, LU Q Q, YANG A K, et al. High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries[J]. Chinese Chemical Letters, 2023, 34(6): 107703.
[58] WU C P, XIE K X, REN K X, et al. Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries[J]. Dalton Transactions, 2020, 49(48): 17629-17634.
[59] ZHOU X, CHEN R P, CUI E H, et al. A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes[J]. Energy Storage Materials, 2023, 55: 538-545.
[60] WANG T T, WANG P J, PAN L, et al. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement[J]. Advanced Energy Materials, 2023, 13(5): 2203523.
[61] LI B, XUE J, HAN C, et al. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 599: 467-475.
[62] XU P J, WANG C Y, ZHAO B X, et al. An interfacial coating with high corrosion resistance based on halloysite nanotubes for anode protection of zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 602: 859-867.
[63] LI B, XUE J, LV X, et al. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode[J]. Surface & Coatings Technology, 2021, 421: 127367.
[64] GUO W, ZHANG Y, TONG X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries[J]. Materials Today Energy, 2021, 20: 100675.
[65] ZHANG Y, YANG G, LEHMANN M L, et al. Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime[J]. Nano Letters, 2021, 21(24): 10446-10452.
[66] SONG Y, RUAN P, MAO C, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries[J]. Nanomicro Lett, 2022, 14(1): 218.
[67] NI Q, KIM B, WU C A, et al. Non-electrode components for rechargeable aqueous zinc batteries: Electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators[J]. Advanced Materials, 2022, 34(20): 2108206.
[68] QIN Y, LIU P, ZHANG Q, et al. Advanced filter membrane separator for aqueous zinc-ion batteries[J]. Small, 2020, 16(39): 2003106.
[69] CAO J, ZHANG D D, GU C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries[J]. Advanced Energy Materials, 2021, 11(29): 2101299.
[70] DONG Y, MIAO L C, MA G Q, et al. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries[J]. Chemical Science, 2021, 12(16): 5843-5852.
[71] MA G Q, MIAO L C, DONG Y, et al. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries[J]. Energy Storage Materials, 2022, 47: 203-210.
[72] NIE X Y, MIAO L C, YUAN W T, et al. Cholinium cations enable highly compact and dendrite-free Zn metal anodes in aqueous electrolytes[J]. Advanced Functional Materials, 2022, 32(32): 2203905.
[73] ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894-12901.
[74] LI D, CAO L S, DENG T, et al. Design of a solid electrolyte interphase for aqueous Zn batteries[J]. Angewandte Chemie International Edition, 2021, 60(23): 13035-13041.
[75] YANG W, DU X, ZHAO J, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries[J]. Joule, 2020, 4(7): 1557-1574.
[76] LIU S L, MAO J F, PANG W K, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries[J]. Advanced Functional Materials, 2021, 31(38): 2104281.
[77] QIU Q L, CHI X W, HUANG J Q, et al. Highly stable plating/stripping behavior of zinc metal anodes in aqueous zinc batteries regulated by quaternary ammonium cationic salts[J]. Chemelectrochem, 2021, 8(5): 858-865.
[78] XU W N, ZHAO K N, HUO W C, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. Nano Energy, 2019, 62: 275-281.
[79] 姬慧敏,谢春霖,张旗,等. 水系锌离子电池负极集流体关键问题及设计策略[J]. 化学学报,2023,81(1):29-41.