Preparation mechanism of ceramic material with solid waste of coal gangue and red mud
-
摘要:
在我国中西部部分地区同时存在煤矸石和赤泥两类大宗难利用固废,利用这些区域内的煤矸石和赤泥协同制备陶瓷材料是实现其大规模资源化利用的有效途径。以山西河津地区煤矸石和赤泥为原料,制备了煤矸石-赤泥基全固废陶瓷样品,并采用XRD、SEM和碱金属浸出实验等手段,研究了原料配比、烧结温度和烧结时间对样品物理性能和微观结构的影响。研究表明,原料配比影响样品的矿相和孔洞结构,最佳质量配比为煤矸石∶赤泥=1∶1,较好烧结温度为1 200 ℃,较好烧结时间为15 min,此时样品的吸水率为0.15 %,抗折强度为90.40 MPa,结构致密,主要矿相为钙长石、蓝方石。赤泥中的碱金属得到了有效固化,相对于烧结前,钠、钾离子固结率分别达到了97.17 %和96.76 %,钙长石和蓝方石是碱金属离子的主要赋存矿相。
Abstract:Coal gangue and red mud, are solid waste found in the central and western parts of China, and are very difficult to be recovered. It is an effective way to realize high-value utilization of solid waste by using them to prepare ceramics. In this paper, the coal gangue and red mud from the Hejin area of Shanxi province were used as raw materials to prepare the whole-solid waste ceramic samples. The effects of raw material ratio, sintering temperature and sintering time on the physical properties and microstructure of the samples were studied by XRD, SEM and alkali metal leaching tests. The results showed that the raw material ratio could affect the crystal phase and pore structure of the samples. The optimum conditions were the raw material ratio between coal gangue and red mud of 1∶1, the sintering temperature of 1 200 ℃ and the sintering time of 15 min. Under these conditions, the water absorption rate of the samples was 0.15%, and their flexural strength was 90.40 MPa. The structure was dense and the main mineral phases were anorthite and hauyne. The alkali metals in the red mud were effectively solidified. Compared with the samples before sintering, the consolidation rates of sodium and potassium ions reached 97.17% and 96.76%, respectively. The main occurrence mineral phases of alkali metal ions were anorthite and hauyne.
-
Keywords:
- red mud /
- coal gangue /
- ceramic materials /
- microstructure /
- flexural strength
-
钕铁硼磁体因其优异的磁性能被广泛应用于新能源汽车、风力发电、电子信息等领域,但其居里温度为312 ℃,通常在150 ℃以下使用,而随着社会不断发展,航空航天、高速电机、高精密仪器等领域对磁体在高温环境中应用的要求越来越高,不仅要求具有高的磁能积,更要能适应高温工作环境,磁体需在150~300 ℃,甚至400~500 ℃极高温环境下工作,钕铁硼磁体因热退磁效应往往会失效,因此具有良好高温性能的SmCo基磁体越来越受到重视[1-5]. SmCo基合金有CaCu5型SmCo5、Th2Zn17型Sm2Co17和TbCu7型SmCo7. SmCo5有较高的磁晶各向异性场,但其饱和磁化强度低;Sm2Co17虽有较高的饱和磁化强度,但磁晶各向异性场低,且需要通过长时间繁琐的热处理,才能提升矫顽力.而SmCo7合金具有高各向异性场,大的饱和磁化强度,高的居里温度,较好的矫顽力温度系数,有望发展成新一代高温永磁体,因此成为当前高温永磁合金研究热点之一[6-8].
TbCu7型SmCo7相是亚稳相,在高温下会分解成SmCo5和Sm2Co17,无法在室温下稳定存在,通常需要通过第三元素添加来获得稳定的单一相或采用快速凝固技术来制备高温亚稳相,为此不少学者对此展开相关研究. Luo等[9]主要研究Si、Cu、Ti、Zr、Hf等第三元素添加对占据晶位的区别及影响,同时指出(Co, M)7与Sm的原子半径比在1.421~1.436,MCo7的生成焓小于-12 kJ/mol且添加元素中有四价电子时才能稳定亚稳相. Guo等[10]研究表明低含量Nb元素添加,铜辊转速为30~40 m/s时能够获得TbCu7型SmCo7相,Nb倾向于占据其2e晶位, 室温性能在SmCo6.8Nb0.2时矫顽力为812 kA/m. Chang等[11]研究指出Zr和Hf元素能有效形成稳定的1:7相,且Hf元素比Zr元素更能有效地提高磁晶各向异性场, 在室温时SmCo6.6Hf0.4矫顽力1 369 kA/m. Sun等[12]研究发现SmCo7-xGax中,只有在Ga添加量为0.9时方能得到TbCu7型铸锭合金. Zhang等[13]系统研究了退火工艺对SmCo7单相合金的相组成和组织结构的演变及其对磁性能的影响,发现SmCo7相在室温至600 ℃间具有良好的单相稳定性.
上述研究主要集中在不同元素添加及热处理工艺对室温性能及结构的影响,对SmCo7-xHfx合金更具应用价值的高温性能方面研究较少.因此,文中选择SmCo7-xHfx(x=0~0.3)为研究对象,研究了Hf添加对SmCo7-xHfx合金的相组成、组织结构、磁性能以及高温性能的影响.
1 实验方法
采用氩弧熔炼法制备名义成分为SmCo7-xHfx(x=0.00, 0.10, 0.15, 0.20, 0.30)合金铸锭,铸锭熔炼4次以保证成分均匀,熔炼时Sm按名义成分过量12%以补偿其挥发,将熔炼好的合金铸锭通过熔体快淬法制备合金薄带(铜辊转速为40 m/s).采用X射线衍射仪(XRD,Empyrean,荷兰帕纳科公司)、扫描电子显微镜(SEM,MLA650F,美国FEI公司)和综合物性测量系统(PPMS,DynaCool-9,美国Quantum Design公司)对合金薄带的组织结构和磁性能进行了分析表征.
2 结果与讨论
2.1 组织结构分析
图 1所示为不同Hf取代量SmCo7-xHfx(x=0.00, 0.10, 0.15, 0.20, 0.30)合金薄带XRD图谱.从图 1中可以看出不同Hf取代量合金薄带均形成了TbCu7型SmCo7相,没有其他明显杂相形成.同时随Hf取代量的增加,(110)晶面的衍射峰向低角度偏移,这是由于Hf原子半径(r=0.208 nm)比Co原子半径(r=0.152 nm)大,Hf进入晶格后会取代2e晶位Co原子,导致晶格常数增大,根据布拉格方程式2d sinθ=nλ,晶格常数增大,使得θ值减小,衍射峰向低角度偏移[14].此外,随着Hf取代量增加,(002)晶面衍射峰逐渐宽化,表明晶粒尺寸随Hf取代量增加而减小.
为进一步分析Hf取代量对XRD衍射峰偏移情况,采用Rietica软件对衍射图谱对其进行结构精修. 图 2所示为SmCo7合金计算拟合与实验检测的X射线衍射图谱.从图 2中可看出计算拟合值与实验检测值匹配较好(其误差参数Rp=2.147%,Rwp=2.739%).从结构精修中得到了SmCo7-xHfx合金薄带晶格常数如表 1所列,括号里为不确定精度.合金晶格常数a从x=0时4.882(1)增加至x=0.3时4.930 7(1),晶格常数c则从x=0时4.052(9)增加至x=0.3时4.059(8),晶格常数增大导致衍射峰往低角度偏移,与前文分析结果一致;同时c/a比值随取代量的增加而减小,其比值在0.82~0.83,这一结果与Luo等[15-17]研究不同元素取代时TbCu7型SmCo7相c/a比值在0.81~0.83结果相一致.
表 1 SmCo7-xHfx合金晶格常数a、c和c/a比值Table 1. Lattice parameters a, c and c/a ratio for SmCo7-xHfx alloys图 3所示为不同Hf取代量的SmCo7-xHfx合金薄带自由面SEM图.从图 3中可看出不同Hf取代量对晶粒大小和形状有明显影响,未添加Hf时合金薄带形成了粗大、不均匀的长轴晶粒,晶粒平均尺寸3.00 μm,如图 3(a)所示;随着Hf取代量增加,晶粒由长轴晶粒变为等轴晶粒,且整体更细小均匀,平均尺寸从x=0时3.00 μm减小至x=0.3时1.41 μm.长轴晶粒形成主要是铜辊表面和薄带自由面存在大的热流梯度,晶粒随着热流自由生长,而高熔点Hf(熔点为2 233 ℃)添加后,熔体快淬过程中冷却时会先行析出,析出的Hf相当于增加了形核点,抑制了SmCo7相晶粒继续生长,使得晶粒更加细小均匀[18-20].这与晶粒尺寸随Hf取代量增加而减小XRD分析结果相一致.
2.2 磁性能及高温性能
图 4所示为SmCo7-xHfx合金薄带常温下的初始磁化及退磁曲线. 图 4中第二象限退磁曲线可看出,随Hf取代量增加,合金薄带矫顽力有较大幅度提高,从x=0时279 kA/m增加至x=0.3时1 560 kA/m;剩磁逐渐下降,从x=0时0.64 T降低至x=0.3时0.53 T,并在SmCo6.8Hf0.2处获得较优性能,为Br=0.55 T,Hc=1 084 kA/m.矫顽力增加是因为Hf原子取代Co原子的2e晶位可提高磁晶各向异性场,使得矫顽力上升;从图 4第一象限的初始磁化曲线表明饱和磁化强度随Hf取代量增加逐渐降低,因为轻稀土Sm与过渡族Co元素的耦合为平行铁磁排列,由于非磁性Hf原子进入了晶格中,破坏了Sm-Co原子间的排列,导致饱和磁化强度降低,引起剩磁下降.此外,当Hf取代量为0.3时,退磁曲线出现了一个小台阶表明磁性相耦合不好,这可能是由于其他相析出造成的,但其他相含量少,在XRD未能检测出来[21, 22].
剩磁温度系数α和矫顽力温度系数β可用来表明合金薄带在该温度区间磁性能的热稳定性.温度系数α和β可分别由式(1)和式(2)计算得出,温度系数绝对值越小,表明其温度稳定性越好. 图 5所示为SmCo7-xHfx合金薄带在不同温度下的温度系数,从图 5中可知不同温度区间的温度系数α和β均随着Hf取代量增加得到改善,表明Hf的取代能有效改善合金薄带的热稳定性.在27~200 ℃区间,Hf取代量在x=0.1~0.2时改善幅度增加,在x=0.2~0.3时改善幅度减缓.热稳定性改善主要是Hf的取代,提高了磁晶各向异性场,使得室温磁性能提升,抗热扰动能力增强;同时细化晶粒有利于矫顽力增加,微观组织结构优化能有效降低退磁因子,提高矫顽力温度系数[7].从表 2可知,SmCo6.8Hf0.3在27~400℃间,矫顽力温度系数由未添加时的-0.21 %/℃改善到-0.18 %/℃,提升了14.3%,明显优于1:5型和2:17型SmCo合金[23, 24].
表 2 SmCo6.8Hf0.3合金与1:5型及2:17型SmCo合金温度系数Table 2. Temperature coefficients of SmCo6.8Hf0.3 alloys and 1:5 and 2:17 type SmCo alloys(1) (2) 3 结论
1)不同Hf取代量的SmCo7-xHfx合金薄带在40 m/s下均获得了稳定的TbCu7型SmCo7相.
2)随着Hf取代量增加,SmCo7-xHfx合金薄带晶格常数a和c增大,c/a比值为0.82~0.83;晶粒由长轴晶变为等轴晶,且更加细小均匀,平均尺寸由3.00 μm减小到1.41 μm.
3)SmCo6.8Hf0.2合金薄带具有较优磁性能,为Br=0.55 T,Hc=1 084 kA/m,在27~400 ℃间,矫顽力温度系数由未添加时的-0.21 %/℃改善到-0.18 %/℃,提升了14.3%.
王庆龙 -
表 1 赤泥、煤矸石氧化物成分
Table 1 Oxide composition of red mud and coal gangue
成分 SiO2 Al2O3 CaO Fe2O3 K2O MgO Na2O SO3 TiO2 P2O5 其他 赤泥 23.60 32.05 12.17 7.39 0.81 0.73 16.97 1.65 3.62 0.29 0.72 煤矸石 51.47 35.93 0.29 3.82 2.47 0.67 0.39 3.80 0.98 0.08 0.10 表 2 各组配方配比表
Table 2 Table of formula ratio of each group
分组 赤泥 煤矸石 合计 A 20 80 100 B 40 60 100 C 50 50 100 D 60 40 100 E 80 20 100 表 3 生坯与样品中Na+/K+离子浸出数据
Table 3 Na+/K+ leaching data in green body and sample
样品 Na+ GB 5749—2006,Na+ K+ GB 5749—2006,K+ C组生坯 1 393.8 200 172.8 未限定 C-1 200 ℃(15 min) 39.4 5.6 -
[1] 王晓丽,李秋义,陈帅超,等.工业固体废弃物在新型建材领域中的应用研究与展望[J].硅酸盐通报,2019,38(11):3456-3464. [2] 郝名远,陈欢乐,李淑敏,等.煤矸石制备气凝胶研究进展[J].矿产保护与利用,2022,42(1):172-178. [3] 李振,雪佳,朱张磊,等.煤矸石综合利用研究进展[J].矿产保护与利用,2021,41(6):165-178. [4] LIU X M, LI Y, SUN H H, et al. Effect of oil shale on Na+ solidification of red Mud-Fly Ash cementitious material[J]. Journal of Shanghai Jiaotong University (Science),2012,17(6):723-729.
[5] 张吉元,柳丹丹,郭晓方,等.赤泥-煤矸石协同还原焙烧回收Fe,Al有价元素[J].环境工程学报,2021,15(10):3306-3315. [6] 丁祥,潘凯凯,彭波,等.熔融发泡法制备赤泥-高铝粉煤灰基多孔陶瓷[J].硅酸盐学报,2022,50(3):713-722. [7] 夏帆,崔诗才,蒲锡鹏.赤泥综合利用现状综述[J].中国资源综合利用,2021,39(4):85-89,105. [8] 屈振民,张帅,张延玲.高铁赤泥制备CaO-SiO2-Fe2O3-Al2O3系微晶玻璃[J].有色金属科学与工程,2019,10(4):34-38,71. [9] KONG X F, LI M, XUE S G, et al. Acid transformation of bauxite residue: Conversion of its alkaline characteristics[J]. Journal of Hazardous Materials,2017,324(Pt B):382-390.
[10] 柳佳建,陈伟,周康根,等.赤泥中铁的回收利用研究进展[J].矿产保护与利用,2021,41(3):70-75. [11] 李静,温鹏飞,何振嘉.煤矸石的危害性及综合利用的研究进展[J].煤矿机械,2017,38(11):128-130. [12] 李宇,刘月明.我国冶金固废大宗利用技术的研究进展及趋势[J].工程科学学报,2021,43(12):1713-1724. [13] 王亚昆,李宇,王耀忠,等.钙硅比对高铁固废陶瓷烧结性能的影响规律研究[J].冶金能源,2018,37(2):48-52,64. [14] PEI D J, LI Y, CANG D Q. Na+-solidification behavior of SiO2-Al2O3-CaO-MgO (10wt%) ceramics prepared from red mud[J]. Ceramics International,2017,43(18):16936-16942.
[15] 邢芩瑞,马远,李宇.不同CaO源固废对钙长石全固废陶瓷矿相和性能的影响[J].有色金属科学与工程,2021,12(1):39-48. [16] 徐晓虹,滕方雄,吴建锋,等.赤泥质陶瓷内墙砖的制备及结构研究[J].陶瓷学报,2007(3):164-170. [17] ZHANG D M, YAN J H, CUI S P, et al. Study on technological conditions of red mud-coal gangue lightweight pottery sand[J]. Key Engineering Materials,2014,3019(599):350-354.
[18] 邬剑明,卫鹏宇,王俊峰,等.成庄矿3#煤矸石特征温度的热重实验研究[J].中国煤炭,2011,37(12):97-100. [19] WANG Q, WANG H G, SUN B Z, et al. Interactions between oil shale and its semi-coke during co-combustion[J]. Fuel,2009,88(8):1520-1529.
[20] 郭玉梅,曹丽琼,郭彦霞,等.煤矸石和赤泥协同提取氧化铝过程矿相转变研究[J].化工学报,2019,70(4):1542-1549. [21] 全国建筑卫生陶瓷标准化技术委员会. GB/T 4100—2015,陶瓷砖[S]. [22] 裴德健.利用冶金渣制备硅钙基多元体系陶瓷的机理及应用研究[D]. 北京:北京科技大学,2019. [23] SUN Y H, LI J S, CHEN Z, et al. Production of lightweight aggregate ceramsite from red mud and municipal solid waste incineration bottom ash: Mechanism and optimization[J]. Construction and Building Materials,2021,287(3):122993.
[24] 龚宇森.准东煤灰熔融-烧结-流变特性的研究[D]. 武汉:华中科技大学,2020. [25] 国家卫生健康委员会. GB 5749—2006,生活饮用水卫生标准[S]. -
期刊类型引用(3)
1. 陈淑琴,伍桂华,杜盼盼,刘瑞,王浩楠. 煤矸石-铝基陶瓷复合材料的制备与性能分析. 机械工程与自动化. 2024(05): 152-154 . 百度学术
2. 母军,易晨浩,韩波,潘雪岗,孙熠,李月明. 透辉石涂层增强铁尾矿建筑陶瓷的制备及性能研究. 陶瓷学报. 2024(06): 1214-1221 . 百度学术
3. 陈拥强,刘方波,郭智奇,仝元东,梁健. 钢渣及矿渣对低温烧结建筑陶瓷瓷胎结构与性能的影响. 陶瓷学报. 2024(06): 1222-1230 . 百度学术
其他类型引用(2)