创刊于1987年, 双月刊
主管:

江西理工大学

主办:

江西理工大学
江西省有色金属学会

ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9

层间硬度比对Cu-Be/Cu层状异构复合材料强韧性的影响

柳春林, 唐延川, 张庆祝, 秦新宝, 郎鹏江, 张欣磊

柳春林, 唐延川, 张庆祝, 秦新宝, 郎鹏江, 张欣磊. 层间硬度比对Cu-Be/Cu层状异构复合材料强韧性的影响[J]. 有色金属科学与工程, 2024, 15(1): 67-79. DOI: 10.13264/j.cnki.ysjskx.2024.01.009
引用本文: 柳春林, 唐延川, 张庆祝, 秦新宝, 郎鹏江, 张欣磊. 层间硬度比对Cu-Be/Cu层状异构复合材料强韧性的影响[J]. 有色金属科学与工程, 2024, 15(1): 67-79. DOI: 10.13264/j.cnki.ysjskx.2024.01.009
LIU Chunlin, TANG Yanchuan, ZHANG Qingzhu, QIN Xinbao, LANG Pengjiang, ZHANG Xinlei. Effect of layer hardness ratio on strength and toughness of Cu-Be/Cu layered composite materials with heterostructure[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 67-79. DOI: 10.13264/j.cnki.ysjskx.2024.01.009
Citation: LIU Chunlin, TANG Yanchuan, ZHANG Qingzhu, QIN Xinbao, LANG Pengjiang, ZHANG Xinlei. Effect of layer hardness ratio on strength and toughness of Cu-Be/Cu layered composite materials with heterostructure[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 67-79. DOI: 10.13264/j.cnki.ysjskx.2024.01.009

层间硬度比对Cu-Be/Cu层状异构复合材料强韧性的影响

基金项目: 

国家自然科学基金青年项目 51701074

江西省自然科学基金青年项目 20181BAB216003

详细信息
    通讯作者:

    唐延川(1989— ),博士,副教授,主要从事金属结构材料强韧化机理相关研究。E-mail: tangyanchuan89@163.com

  • 中图分类号: TG146.1

Effect of layer hardness ratio on strength and toughness of Cu-Be/Cu layered composite materials with heterostructure

  • 摘要: 通过真空热压复合、冷轧及热处理的方式制备了具有不同层间硬度比(RCu-Be/Cu分别为3.0、 5.0、 7.0)的Cu-Be/Cu层状异构复合材料。研究了层间硬度比RCu-Be/Cu对复合材料强度-塑性匹配及应变硬化率的影响,探索了不同RCu-Be/Cu下异质变形诱导强化对复合材料应变硬化行为的影响。研究结果表明,随着RCu-Be/Cu升高,层状异构复合材料的抗拉强度升高、均匀伸长率降低,但复合材料抗拉强度均高于依据混合定律计算值,且均匀伸长率均高于相应Cu-Be组元,其中RCu-Be/Cu为5.0的复合材料具有最优强度-塑性匹配。异质变形诱导强化作用可使层状异构复合材料中产生额外应变硬化,但RCu-Be/Cu为3.0的复合材料中异质变形诱导强化产生的应变硬化作用较弱,而RCu-Be/Cu为7.0的复合材料中异质变形诱导硬化作用在塑性变形初期就达到饱和状态并迅速降低,RCu-Be/Cu为5.0的复合材料中异质变形诱导硬化在材料应变硬化过程中占据主导作用,且可在较大应变范围内为材料提供额外应变硬化能力。
    Abstract: The Cu-Be/Cu layered heterogeneous composite materials with different layer hardness ratios (RCu-Be/Cu=3.0, 5.0, 7.0) were prepared by vacuum hot pressing bonding, cold rolling and subsequent heat treatments. The effects of RCu-Be/Cu with different interlayer hardness ratio on the balance of strength and ductility and the strain hardening rate of the composites were investigated. Furthermore, the effect of heterogeneous deformation induced (HDI) hardening on the strain hardening behavior of composites with different RCu-Be/Cu was also studied. The results show that the ultimate tensile strength increases and the uniform elongation decreases with the increase of the interlayer hardness ratio. However, the ultimate tensile strength of the composites is higher than the value calculated by the rule of mixture (ROM). Moreover, the uniform elongation is also higher than that of the corresponding Cu-Be component, among which the composites with RCu-Be/Cu of 5.0 possess the best balance of strength and ductility. The extra strain hardening effect in the layered composite materials with heterostructure can be caused by HDI hardening. The effect of HDI hardening on strain hardening is relatively weak in the composites with RCu-Be/Cu of 3.0, while the HDI hardening in the composites with RCu-Be/Cu of 7.0 reaches saturation at the initial stage of plastic deformation and then decreases rapidly. The HDI hardening in the composites with RCu-Be/Cu of 5.0 plays a dominant role during the strain hardening process and provides the extra strain hardening effect for the composites within a large strain range.
  • 震动是爆破的主要危害之一[1-3],是一个涉及爆源、传播介质、受震物体,受爆破参数、地质地层、结构响应等因素影响的复杂过程[4-5].在地下矿山,频繁爆破产生的震动对采空区、巷道、井筒、支护体、地表构筑物和尾矿库坝体的稳定性造成了极大的危害,信号的获取和分析研究是矿山爆破研究的重要内容[6-7].小波包技术具有多分辨分析特性,适合处理爆破震动等非平稳信号,针对小波技术只对低频部分持续分解, 造成高频部分频率分辨率差,小波包技术对信号高频部分同样细化分解,提高了信号高频部分的分辨率,是一种更加精细的信号分析方法[8-10]. 为此,借助小波包技术对某矿爆破震动信号进行分析.

    该矿位于地表侵蚀面之上,是急倾斜中厚矿体,矿石、夹石和顶底板围岩稳固性好;矿区含水层少,岩组富水性较弱,水文地质情况较好.采用水平扇形深孔阶段矿房法开采矿体(图 1),矿房沿走向布置,长度56 m,宽度12.7 m,阶段高度50 m,顶柱5 m,间柱6 m.炮孔由YT一28 型钻机钻进,孔径62~65 mm,孔深5~20 m,崩矿时采用导爆管雷管孔内微差起爆,水平扇形炮孔由下往上逐排爆破,矿石靠自重下放到底部结构.

    图  1  爆源、测点布置

    现场测试分5 组(A、B、C、D、E)实验,见图 1,爆源集中在该矿79 线的+372 m 分段的采矿进路和切割巷道,测点(1、2、3、4、5)布置在+384 m 分段的放顶巷道.

    测试仪器为BlastmateⅢ 爆破测震仪[11],当质点速度超过0.1 mm 时,传感器自动触发,采样持续时间6 s,D、E 组采样率2 048 ,A、B、C 组采样率4 096,为方便分析,对其进行抽稀,变成2048.

    表 1是测震仪记录数据,图 2是B 组实验测试2号点的原始波形图,噪声充满整个时间采样坐标,波形出现只有正值部分的异常现象,信号分辨率差,分析前须进行去噪处理.

    表  1  原始数据
    下载: 导出CSV 
    | 显示表格
    图  2  原始波形

    小波包去噪通常采用阔值法去噪,其基本步骤有[12-14]: ① 选定合适的小波基,对原始信号进行一定层次的分解; ② 确定阔值并对最底层小波包高频系数进行阔值量化; ③ 重构最底层小波包低频系数和经过量化处理的高频系数,得到真实信号.

    爆破震动信号衰减迅速,常采用db 和sym 两类小波基进行分析[15]图 3是采用db8 小波基对原始波形进行3 层小波包分解去噪后的波形.去噪后,信 号的质点峰值速度(PPV) 由0.l52 0 cm/s 变成0.l53 0 cm/s,噪声强度达到0.0l6 5 cm/s.

    图  3  小波包去躁

    奈奎斯特频率为采样率的一半[16],故信号的频率范围为0-l 024 Hz,选定db8 小波基对去噪后获取的真实信号进行4 层分解,则可获取24个频段长度为64 Hz 的分信号,其对应的频率范围分别为0~64 Hz、64~l28 Hz、… 、960~1 024 Hz.0~64 Hz、64~128Hz、64~192 Hz、192~256 Hz 这4 个频段( 图 4)的分信号,幅值较大,有明显的衰减,为信号分布的主要频率区域. 大于256 Hz 频段的分信号幅值很小,是信号的微弱部分,而爆破震动信号频率通常是在200 Hz 以下的区域,这也反证了小波包去噪的有效性.

    图  4  4 层小波包分解

    测振仪记录的数据变化复杂,规律性差.在相同爆破条件下,1、2、5 号测点的速度和频段分速度大致呈随距离增大而变小的规律.而3、4 号与1、2、5 号测点相比,总速度和频段分速度幅值大,其原因是1、2、5 号测点与爆源中间隔有一条放顶巷道,震动波传播实际距离比理论值更远,3、4 号测点与爆源同侧,震动波理论传播距离即为实际传播距离.

    噪声呈随机、多变特性,与测试环境、传播介质等因素有关,但常与真实信号混叠,造成信号波形淹没,使PPV 增大或减小,降低原始信号的准确性与可靠性.

    总体而言, 爆破震动速度在各频段均匀分布,没有明显集中现象,见表 2.但在一次爆破中,1、2 测点频段4 的分速度相对频段1、频段2 大,由于高频振动波在传播过程中容易被吸收,5 测点频段2 的分速度相对频段4 大,也即随着传播距离的增大,速度有向低频集中的趋势.实际工程中,在井筒、地表等地,距离爆源较远,爆破震动波频率易接近于构筑物的固有频率,产生共振效应,加大爆破震动危害.

    表  2  频段分信号
    下载: 导出CSV 
    | 显示表格

    为得出速度V、药量Q和距离R的关系,将国内外普遍采用的萨道夫斯基公式$V=k{{\left( \sqrt[3]{Q}/R \right)}^{a}}k\rho \left( k \right)$是与爆破条件有关的系数、a是与传播地层和介质有关的衰减指数、ρ是药量Q与距离R的组合值称为比列药量)引人,对去噪后的数据进行线性拟合,见图 5,得出a=1.459 5、k=10.657 0,也即该矿爆破震动速度的经验公式为$V=10.657{{\left( \sqrt[3]{Q}/R \right)}^{1.4595}}$.

    图  5  lnV与 lnρ的线性拟合

    1) 噪声易与真实信号混叠,造成信号波形被淹没,使PPV 增大或减小,降低原始信号的准确性与可靠性.

    2) 真实信号在0-256 Hz 均有分布,各频段未见明显集中现象,但在同一爆破中,随着传播距离的增加,速度有向低频集中的趋势.

    3) 通过线性回归,得出该矿的萨道夫斯基公式衰减系数a=1.459 5、k=10.657 0,从而确定了爆破震动波衰减的经验公式,为矿山爆破设计提供了一定依据.

    赵中波
  • 图  1   Cu-Be/Cu层状异构复合材料的显微组织及硬度分布情况:(a) RCu-Be/Cu=3.0(时效15 min)OM显微组织;(b) RCu-Be/Cu=3.0(时效15 min)显微硬度;(c) RCu-Be/Cu=5.0(时效60 min)OM显微组织;(d) RCu-Be/Cu=5.0(时效60 min)显微硬度;(e) RCu-Be/Cu=7.0(时效180 min)OM显微组织;(f) RCu-Be/Cu=7.0(时效180 min)显微硬度

    Fig  1.   Microstructure and microhardness distribution of Cu-Be/Cu layered composite materials with heterostructure:(a) RCu-Be/Cu=3.0 (aging for 15 min) OM microstructure;(b) RCu-Be/Cu=3.0 (aging for 15 min) microhardness;(c) RCu-Be/Cu=5.0 (aging for 60 min) OM microstructure;(d) RCu-Be/Cu=5.0 (aging for 60 min) microhardness;(e) RCu-Be/Cu=7.0 (aging for 180 min) OM microstructure;(f) RCu-Be/Cu=7.0 (aging for 180 min) microhardness

    图  2   Cu-Be/Cu层状异构复合材料的EBSD晶粒取向图谱

    Fig  2.   EBSD grain orientation image of Cu-Be/Cu layered composite materials with heterostructure

    图  3   Cu-Be/Cu层状异构复合材料的晶粒尺寸分布情况:(a) Cu-Be层晶粒尺寸分布情况;(b) Cu层晶粒尺寸分布情况

    Fig  3.   Grain size distribution of Cu-Be/Cu layered composite materials with heterostructure:(a) grain size distribution of Cu-Be layer; (b) grain size distribution of Cu layer

    图  4   金属组元及Cu-Be/Cu层状异构复合材料的单向拉伸曲线:(a) 金属组元的拉伸曲线;(b) 层状异构复合材料的单向拉伸曲线

    Fig  4.   Uniaxial tensile curves of metal components and Cu-Be/Cu layered composite materials with heterostructure:(a) uniaxial tensile curves of the metal components; (b) uniaxial tensile curves of Cu-Be/Cu laminated composites with heterostructure

    图  5   金属组元及Cu-Be/Cu层状异构复合材料拉伸性能对比:(a) 复合材料抗拉强度试验结果与ROM计算结果对比;(b) 复合材料与Cu-Be合金的均匀伸长率对比

    Fig  5.   Comparison of tensile properties of metal components and Cu-Be/Cu layered composite materials with heterostructure:(a) comparison of ultimate tensile strength test results and ROM calculation results of composites;(b) comparison of uniform elongation of composites and Cu-Be alloy

    图  6   Cu-Be/Cu层状异构复合材料实际应变硬化曲线与ROM计算曲线对比:(a) RCu-Be/Cu=3.0;(b) RCu-Be/Cu=5.0;(c) RCu-Be/Cu=7.0;(d) 基于KME模型的金属应变硬化行为示意

    Fig  6.   Comparison of experimental and calculated strain hardening curves of Cu-Be/Cu layered composite materials with heterostructure:(a)RCu-Be/Cu=3.0;(b)RCu-Be/Cu=5.0; (c)RCu-Be/Cu=7.0;(d) schematic diagram of metal strain hardening behaviors based on KME model

    图  7   Cu-Be/Cu层状异构复合材料拉伸断口形貌:(a) RCu-Be/Cu=3.0宏观断口形貌;(b) RCu-Be/Cu=3.0高倍断口形貌;(c) RCu-Be/Cu=5.0宏观断口形貌;(d) RCu-Be/Cu=5.0高倍断口形貌;(e) RCu-Be/Cu=7.0宏观断口形貌;(f) RCu-Be/Cu=7.0高倍断口形貌

    Fig  7.   Fracture surface of Cu-Be/Cu layered composite materials with heterostructure:(a) RCu-Be/Cu=3.0 macroscopic fracture surface; (b) RCu-Be/Cu=3.0 high magnification fracture morphology;(c) RCu-Be/Cu=5.0 macroscopic fracture surface; (d) RCu-Be/Cu=5.0 high magnification fracture morphology;(e) RCu-Be/Cu=7.0 macroscopic fracture surface; (f) RCu-Be/Cu=7.0 high magnification fracture morphology

    图  8   Cu-Be/Cu层状异构复合材料循环加卸载试验结果:(a) 复合材料循环加卸载应力-应变曲线;(b) 迟滞回线环的局部放大图;(c) 典型的迟滞回线环示意图;(d) 归一化反向塑性应变(εrp/εy)与归一化应变(εp/εy)之间的关系

    Fig  8.   Loading-unloading-reloading (LUR) test results of Cu-Be/Cu layered composite materials with heterostructure:(a) cylic loading-unloading-reloading stress-strain curves of the composites; (b) magnified view of the hysteresis loops;(c) schematic diagram of typical hysteresis loop; (d) relationship between normalized reverse plastic strain (εrp/εy) and normalized strain (εp/εy)

    图  9   Cu-Be/Cu层状异构复合材料HDI应力以及流变应力、HDI应力和有效应力的应变硬化率随应变变化情况:(a) 复合材料HDI应力;(b) RCu-Be/Cu=3.0复合材料应变硬化行为;(c) RCu-Be/Cu=5.0复合材料应变硬化行为;(d) RCu-Be/Cu=7.0复合材料应变硬化行为

    Fig  9.   HDI stress and strain hardening rate of flow stress, HDI stress and effective stress of Cu-Be/Cu layered heterogeneous composite materials with applied strain:(a) HDI stress of the composites; (b) strain hardening behavior of the RCu-Be/Cu=3.0 composite;(c) strain hardening behavior of the RCu-Be/Cu=5.0 composite; (d) strain hardening behavior of the RCu-Be/Cu=7.0 composite

  • [1] 姜业欣, 娄花芬, 解浩峰, 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84-92.
    [2] 雷前, 杨一海, 肖柱, 等. 高强高导高耐热铜合金的研究进展与展望[J]. 材料导报, 2021, 35(15): 15153-15161.
    [3] 代雪琴, 贾淑果, 范俊玲, 等. 高强高导铜合金的强化机理与研究热点[J]. 材料热处理学报, 2021, 42(10): 18-26.
    [4]

    TANG Y C, KANG Y L, YUE L J, et al. Precipitation behavior of Cu-1.9 Be-0.3 Ni-0.15 Co alloy during aging[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 307-315.

    [5]

    AHN H, HAN S Z, CHOI E A, et al. Simple optimization for strength and conductivity of Cu-Ni-Si alloy with discontinuous precipitation[J]. Materials Characterization, 2022, 184: 111605.

    [6] 刘若絮, 毛西秦, 欧梅桂, 等. 冷拉拔变形对纯铜组织及性能的影响[J]. 有色金属科学与工程, 2022, 13(2): 67-75.
    [7] 刘婷, 徐淑波, 秦振, 等. 剧烈塑性变形对块状镁合金微观组织和力学性能的影响[J]. 有色金属科学与工程, 2013, 4(4): 51-57.
    [8]

    TANG Y C, KANG Y L, YUE L J, et al. Mechanical properties optimization of a Cu-Be-Co-Ni alloy by precipitation design[J]. Journal of Alloys and Compounds, 2017, 695: 613-625.

    [9] 范根莲, 郭峙岐, 谭占秋, 等. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
    [10] 张显程, 张勇, 李晓, 等. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
    [11] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
    [12]

    ZHU Y T, WU X L. Perspective on hetero-deformation induced (HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7(10): 393-398.

    [13]

    ZHU Y T, AMEYAMA K, ANDERSON P M, et al. Heterostructured materials: superior properties from hetero-zone interaction[J]. Materials Research Letters, 2021, 9(1): 1-31.

    [14]

    WU X L, ZHU Y T. Gradient and lamellar heterostructures for superior mechanical properties[J]. MRS Bulletin, 2021, 46(3): 244-249.

    [15]

    WU X L, YANG M, YUAN F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501-14505.

    [16]

    HUANG C X, WANG Y F, MA X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate[J]. Materials Today, 2018, 21(7): 713-719.

    [17]

    WANG Y F, YANG M X, MA X L, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates[J]. Materials Science and Engineering: A, 2018, 727: 113-118.

    [18]

    LI J S, WANG S Z, MAO Q Z, et al. Soft/hard copper/bronze laminates with superior mechanical properties[J]. Materials Science and Engineering: A, 2019, 756: 213-218.

    [19]

    XIA Y P, WU H, MIAO K S, et al. Effects of the layer thickness ratio on the enhanced ductility of laminated aluminum[J]. Journal of Materials Science & Technology, 2022, 111: 256-267.

    [20]

    CHEN X, ZHANG B X, ZOU Q, et al. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy[J]. Journal of Materials Science & Technology, 2022, 100: 193-205.

    [21] 唐延川, 张欣磊, 柳春林, 等. Cu-Be/Cu层状非均质复合材料塑性变形行为的原位研究[J]. 华东交通大学学报, 2022, 39(3): 99-109.
    [22]

    AFSHAR A, SIMCHI A. Flow stress dependence on the grain size in alumina dispersion-strengthened copper with a bimodal grain size distribution[J]. Materials Science and Engineering: A, 2009, 518(1/2): 41-46.

    [23]

    ZHANG H T, JIANG Y B, XIE J X, et al. Precipitation behavior, microstructure and properties of aged Cu-1.7 wt% Be alloy[J]. Journal of Alloys and Compounds, 2019, 773: 1121-1130.

    [24]

    TANG Y C, KANG Y L, YUE L J, et al. The effect of aging process on the microstructure and mechanical properties of a Cu-Be-Co-Ni alloy[J]. Materials & Design, 2015, 85: 332-341.

    [25] 耿林, 范国华. 金属基复合材料的构型强韧化研究进展[J]. 中国材料进展, 2016, 35(9): 686-693,701.
    [26]

    HUANG M, XU C, FAN G, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite[J]. Acta materialia, 2018, 153: 235-249.

    [27] 孙甲鹏, 贾云飞, 张勇, 等. 强塑均衡金属材料精准设计及制备[J]. 机械工程学报, 2021, 57(16): 329-348, 360.
    [28]

    MONDAL C, SINGH A K, MUKHOPADHYAY A K, et al. Tensile flow and work hardening behavior of hot cross-rolled AA7010 aluminum alloy sheets[J]. Materials Science and Engineering: A, 2013, 577: 87-100.

    [29]

    TIAN Y Z, ZHAO L J, PARK N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility[J]. Acta Materialia, 2016, 110: 61-72.

    [30]

    WANG E H, KANG F W, WANG H B, et al. Fabrication, microstructure and mechanical properties of novel NiTi/(Al3Ti+ Al3Ni) laminated composites[J]. Journal of Alloys and Compounds, 2019, 775: 1307-1315.

    [31]

    FANG X T, HE G Z, ZHENG C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass[J]. Acta Materialia, 2020, 186: 644-655.

    [32]

    GAO B, HU R, PAN Z, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content[J]. Journal of Materials Science & Technology, 2021, 65: 29-37.

    [33]

    LIU D, WANG J, WANG C, et al. Hetero-Deformation-Induced (HDI) plasticity induces simultaneous increase in both yield strength and ductility in a Fe50Mn30Co10Cr10 high-entropy alloy[J]. Applied Physics Letters, 2021, 119(13): 131906.

    [34]

    ZHAO J F, ZAISER M, LU X C, et al. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities[J]. International Journal of Plasticity, 2021, 145: 103063.

图(9)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  6
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-30
  • 修回日期:  2023-05-07
  • 刊出日期:  2024-02-28

目录

/

返回文章
返回
x 关闭 永久关闭

敬  告

为进一步规范期刊查阅、引用、统计等,现对我部编辑出版的《有色金属科学与工程》英文刊名全称和英文刊名缩写公告如下:

英文刊名全称为:Nonferrous Metals Science and Engineering

英文刊名缩写为:Nonferr.Met.Sci.Eng.