Abstract:
In this paper, the hydrothermal template method was applied to regulate the morphology and size of the precursors by adding the surfactant citric acid and the template graphene oxide (GO). The precursor was placed in the air atmosphere for heat treatment to obtain thin, small-sized and dispersed WO
3. Then, under a nitrogen protection atmosphere, the ethanol/methanol liquid carbon source was introduced and kept warm at 1 000 ℃ for 2 h to carry out the in-situ reduction carbonization reactions and the tungsten carbide (WC@C) coated with graphified carbon layer was obtained. Different concentrations of Pt NPs in situ at WC@C surface loading yielded a Pt-WC@C compound catalyst. The catalyst Pt-WC@C-1 (10% Pt) has the best performance in an alkaline solution, with an overpotential (
η10) of 187 mV and a Taffir slope of 115.7 mV / dec (10% Pt) at the current density of 10 mA/cm
2. In acid solution, the Pt-WC@C compound catalyst has a better performance in catalytic properties of hydrogen precipitation. The performance of Pt-WC@C-2 (5% Pt) is better than that of Pt-WC@C-1 (10% Pt) and Pt-WC@C-3 (1% Pt) with an overpotential (
η10) of 87.6 mV and the Taffir slope of 51.2 mV/dec, which is mainly due to thinner graphitized carbon layers coated on the surface of well-dispersed WC particles.