Y2MgTiO6:Mn4+/Nd3+的制备及近红外发光性能

Preparation and near-infrared luminescence properties of Y2MgTiO6: Mn4+/ Nd3+

  • 摘要: 采用传统的高温固相反应制备了一系列Y2MgTiO6:Mn4+/Nd3+下转换材料。利用稳态激发发射光谱以及瞬态荧光寿命等进行了分析, 在Mn4+→Nd3+能量传递过程中, 在331 nm激发下Nd3+产生885 nm和1 085 nm的红外发射对应于4F3/24I11/24F3/24I9/2能级跃迁。研究结果证实, 双掺Mn4+/Nd3+的Y2MgTiO6在1 085 nm荧光强度比其单掺Nd3+的Y2MgTiO6增强了5倍。还进一步阐释了Mn4+→Nd3+能量传递主要是共振能量传递的偶极-偶极机制。近红外发光的下转换材料Y2MgTiO6:Mn4+/Nd3+对晶体硅太阳能电池的荧光转换层具有很好的应用价值。

     

    Abstract: A series of Y2MgTiO6:Mn4+/Nd3+ down-conversion materials were prepared by traditional high-temperature solid-phase reaction. The steady-state excitation emission spectra and transient fluorescence lifetime were analyzed. During the energy transfer process of Mn4+→Nd3+, the infrared emission of 885 nm and 1 085 nm generated by Nd3+ under the excitation of 331 nm corresponds to 4F3/2→4I11/2 and 4F3/2→4I9/2 energy level transition. The results confirmed that the luminescence intensity of Y2MgTiO6 doped with Mn4+ and Nd3+ at 1 085 nm was 5 times stronger than that of Y2MgTiO6 doped with Nd3+. Furthermore, the energy transfer from Mn4+ to Nd3+ is mainly achieved by the electric dipole-dipole mechanism of resonance energy transfer. The near-infrared emitting down-conversion material Y2MgTiO6: Mn4+/Nd3+ is very useful for the luminescence conversion layer of crystalline silicon solar cells.

     

/

返回文章
返回