Abstract:
Near-equiatomic Ni-Ti composite powder was synthesized by using gas atomized Ni powder and irregularly shaped Ti powder by TEKNA radio frequency plasma spheroidization process. The effect of carrier gas flow rate on the morphology, particle size, phase distribution and element distribution of the prepared powder was investigated. The morphology and particle size of the power were characterized by scanning electron microscopy and particle size analyzer while the phase constitution and element distribution were characterized by XRD and EDS. The results showed that compared with original powder, the prepared powder had a significant increase in particle size; as the carrier gas flow rate increased, so did Ni content of the powder. And when the carrier gas flow rate was 2.5 L/min, the spheroidization rate reached 100% and the Ni mass fraction was 55.2%; the spheroidized powder consisted of three phases, namely Ni phase, Ti phase and NiTi phase; Ni and Ti elements could be observed in each particle of the power, but the mass fraction of Ti and Ni contained in each particle was not completely the same.