基于机理和数据驱动的转炉输入—输出混合模型

Converter input-output mixture model based on mechanism and data-driven

  • 摘要: 为了实现能量流网络的精细化控制,建立了基于机理和数据驱动的转炉输入-输出模型.对转炉工序进行物质的输入和输出解析,根据实际生产数据,利用数理统计和回归的方法,得到转炉冶炼相关参数,包括:氧气利用率、炉渣碱度、渣中氧化镁含量、钢水终点氧含量、转炉热效率.进而利用冶炼机理以转炉冶炼的铁水和废钢数据,以及目标钢水的成分和温度为输入量,计算得到吹氧量、造渣剂加入等信息作为模型的输出量.根据机理模型计算的部分输出参数,利用神经网络预测钢水终点温度,并与机理模型采用的目标钢水温度进行对比,进而对机理模型进行校正,以提高模型的精确度.采用C#语言将模型程序化,模型计算结果表明,相同误差范围内,混合模型的石灰加入量、轻烧白云石加入量、氧化球团加入量命中率相较于机理模型分别提高了11.1 %、8.3 %、8.3 %.

     

    Abstract: To realize the fine control of the energy flow network, a converter input -output model is established based on mechanism and data model. The input and output of the material in the converter process are analyzed. According to the actual production data, the converter smelting relevant parameters, including oxygen utilization rate, slag basicity, magnesium content in slag, converter thermal efficiency, are obtained by mathematical statistics and regression method. By applying the smelting mechanism, the input-output model is established with the conditions of molten iron and scrap of smelting, the target molten steel composition and temperature as the inputs; the information of calculated amount of oxygen and slag as the outputs. The accuracy of the model is improved through revising the mechanism model by comparing the parameters calculated by the mechanism model and the neural network respectively. The model is programmed through the C # language. The results of model calculation show that, in the mixed model, the hit rates of the adding amounts of lime, dolomite and the oxidized pellets increased 11.1 %, 8.3 % and 8.3 % respectively in comparison with the mechanism model in the same error range.

     

/

返回文章
返回