六水草酸镝热分解过程机理及动力学研究

Mechanism and kinetics of thermal decomposition of dysprosium oxalate with six water

  • 摘要: 稀土草酸盐是目前制备稀土氧化物,尤其是制备具有可控粒度的稀土氧化物常用的前驱体,它具有沉淀物晶型好,易于过滤分解等优点.然而,目前稀土草酸盐热分解的动力学研究较少,因此,采用热重-差热分析法,研究六水草酸镝的热分解过程,通过Kissinger、Ozawa和Crane法计算六水草酸镝的分解动力学参数,通过Coats-Redfern法求出反应的机理函数.结果表明:几种方法计算的分解活化能比较接近,六水草酸镝热分解分2步进行,第1步为1级脱水反应,反应机理函数为F1,表观活化能为62.48 kJ/mol,指前因子为1.84×106;第2步也为1级分解反应,反应机理函数为F2,表观活化能为106.42 kJ/mol,指前因子为2.79×107.

     

    Abstract: Rare earth oxalates are the common precursors for preparing rare earth oxides, especially rare earth oxides with controlled particle size, which have the advantages of good precipitate crystal form, easy filtration and decomposition, etc. However, kinetic study of the thermal decompositionforcurrent rare earth oxalates was less, Therefore, thethermogravimetry-differential thermal analysis method was used to study the thermal decomposition process of dysprosium hexahydrate. The decomposition kinetics parameters of dysprosium hexahydrate were calculated by Kissinger, Ozawa and Crane methods. Coats-Redfern method was used to find the mechanism function of the reaction.The results showed that the decomposition activation energies calculated by several methods were quite close and the thermal decomposition of dysprosium hexahydrate was carried out in two steps. The first step was the first order dehydration reaction. The reaction mechanism function was F1, The activation energy was 62.48 kJ/mol and the pre-exponential factor was 1.84×106. The second step was also the first-order decomposition reaction. The reaction mechanism function was F2. The apparent activation energy was 106.42 kJ/mol and the pre-exponential factor was 2.79×107.

     

/

返回文章
返回