创刊于1987年, 双月刊
主管:

江西理工大学

主办:

江西理工大学
江西省有色金属学会

ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9

可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能

田坚, 刘珍, 魏龙福, 余长林

田坚, 刘珍, 魏龙福, 余长林. 可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J]. 有色金属科学与工程, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
引用本文: 田坚, 刘珍, 魏龙福, 余长林. 可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J]. 有色金属科学与工程, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
Citation: TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005

可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能

基金项目: 

国家自然科学基金资助项目 21607064

江西省5511科技创新人才项目 20165BCB18014

江西省自然科学基金项目 20161BAB203090

江西省主要学科学术和技术带头人项目 2017

详细信息
    通讯作者:

    余长林(1974-),男, 博士, 教授, 主要从事纳米催化材料和光催化研究, E-mail:yuchanglinjx@163.com

  • 中图分类号: O643.3; TF125.24

A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation

  • 摘要: 通过共沉淀与连续沉淀法制备了一系列复合催化剂Ag2S-Ag2CO3(4 % ,8 % ,16 % ,32 % 和40 % Ag2S)以及Ag2CO3@Ag2S(32 % Ag2S),Ag2S@Ag2CO3(32 % Ag2S)异质结光催化剂.利用了N2物理吸附、X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)、拉曼光谱(Raman)和紫外可见漫反射光谱(UV-vis DRS)、瞬态光电流响应(TPR)对所制备的催化剂进行表征.在可见光的照射下,研究Ag2S复合量和核壳结构对Ag2CO3降解甲基橙、苯酚和双酚A的光催化活性与稳定性.结果表明:Ag2S/Ag2CO3异质结光催化剂相比Ag2S和Ag2CO3具有更高效的光催化性能.当Ag2S的掺杂量(质量分数)为32 % 时,Ag2S-Ag2CO3的光催化降解效率最高.而且Ag2S/Ag2CO3异质结结构对光催化性能有很大影响.对比Ag2S-Ag2CO3和Ag2CO3@Ag2S,核壳结构的Ag2CO3@Ag2S拥有更好的活性与稳定性.光催化性能增强的主要原因是Ag2S/Ag2CO3异质结的形成而拥有优异的表面性能与独特的电子结构.同时,Ag2S/Ag2CO3异质结结构可以很好地促进光生电子空穴的分离与·OH自由基的产生.更重要的是,表壳Ag2S的低溶解性可以有效地保护核心Ag2CO3,使Ag2CO3更加稳定.
    Abstract: A series of Ag2S-Ag2CO3 (4 % , 8 % , 16 % , 32 % and 40 % Ag2S), Ag2CO3@Ag2S (32 % Ag2S) and Ag2S@Ag2CO3 (32 % Ag2S) heterojunction photocatalysts were fabricated by coprecipitation or successive precipitation reaction. The obtained catalysts were analyzed by N2physical adsorption, powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR), Raman spectroscopy(Raman) and UV-VIS diffuse reflectance spectroscopy(UV-VIS DRS). Under visible light irradiation, the influences of Ag2S content and core-shell property on photocatalytic activity and stability were evaluated in studies focused on the degradation of methyl orange (MO) dye and phenol. Results showed that excellent photocatalytic performance was obtained over Ag2S/Ag2CO3 heterojunction photocatalysts with respect to Ag2S and Ag2CO3. With optimal content of Ag2S (mass fraction of 32 % ), the Ag2S-Ag2CO3 showed the highest photocatalytic degradation efficiency. Moreover, the structured property of Ag2S/Ag2CO3 greatly influenced the activity. Compared with Ag2S-Ag2CO3 and Ag2CO3@Ag2S, core-shell like Ag2S@Ag2CO3 demonstrated the highest activity and stability. The main reason for the boosting of photocatalytic performance was due to the formation of Ag2S/Ag2CO3 heterojunction with well contacted interface and unique electron structures. Ag2S/Ag2CO3 heterojunction could significantly increase the separation efficiency of the photo-generated electrons (e-) and holes(h+), and production of oOH radicals. More importantly, the low solubility of Ag2S shell could effectively protect the core of Ag2CO3, which further guarantees the stability of Ag2CO3.
  • 金属镁在有色金属材料中占据着重要的地位,因其能与其他金属制成性能优异的合金,广泛应用于航空航天、高铁、医学等诸多领域[1-6].金属镁的生产方式主要有2种:分别为热还原法和电解法.热还原法需要在真空以及上千摄氏度的高温下进行,对设备以及操作要求较高,并且操作流程较长,存在效率低、能耗高等问题[7].电解法凭借流程短,设备简单易操作,提取金属纯度高等优点适用于工业实践当中.

    为了搞清Mg2+的还原机理,促使一大批研究者进行了深入的研究,其中唐浩等[8]研究了723 K温度时LiCl-KCl-MgCl2熔盐中Mg2+的电化学还原过程,认为Mg2+的阴极析出是1步反应转移2个电子过程.因电解质当中LiCl极易吸水,杨少华等[9]选取氟化物电解质体系研究了1 173 K时LiF-MgF2-BaF2-KCl体系当中以MgO为原料Mg2+的电化学还原过程,认为Mg2+在钨电极上是受扩散控制的1步反应转移2个电子的不可逆过程.王姗姗等[10]研究了873 K在LiCl-KCl熔盐中Ni电极上Mg2+的电化学行为,认为是1步反应得2个电子析出过程,且在Mg2+析出前存在欠电位合金化过程.

    工业生产注重效益同时兼顾环保,故原料需来源广泛、廉价且产生的废料等易于处理.因LiCl与LiF价格昂贵,故选取氯化物体系当中LiCl-X体系或氟化物体系当中LiF-X体系不利工业效益最大化;而氟化物体系对设备腐蚀性较强,增加了隐性成本,且氟化物难于处理,故选取氯化物体系中廉价的NaCl-KCl可以做到效益最大化,且产生的氯气易于回收,兼顾了环保.随着近年来MgCl2生产工艺的成熟[11-12],致使MgCl2纯度以及产能提升,价格下降.文中以NaCl-KCl为电解质体系,替代LiCl-X体系或LiF-X体系,以MgCl2为原料,于1 073 K温度下利用电化学工作站设备通过电化学暂态技术,研究Mg2+在钨电极上的电化学还原过程,期望解析Mg2+在钨电极上的电化学还原机理,为工业生产起到指导意义.

    实验当中所使用的原料及试剂见表 1.

    表  1  原料及试剂参数
    Table  1.  Raw materials and reagents
    下载: 导出CSV 
    | 显示表格

    实验当中所使用的三电极参数如表 2所列.

    表  2  三电极体系的规格参数
    Table  2.  Specification parameters of three electrodes system
    下载: 导出CSV 
    | 显示表格

    实验简易装置示意图如图 1所示.

    图  1  电化学测试装置示意
    1.工作电极;2.参比电极;3.对电极;4.刚玉坩埚;5.铁坩埚;6.刚玉管;7.冷却设备;8.电阻炉;9.热电偶.
    Figure  1.  Electrochemical test device schematic

    将NaCl、KCl、无水氯化镁、坩埚以及洁净的刚玉管一并置于160 ℃烘箱内烘24 h,然后将烘干的电解质NaCl-KCl迅速准确称量按照摩尔比1:1混合均匀后置于干燥箱内待用.实验前配置1 mol/L的NaOH溶液,将钨丝、钨棒在实验前浸泡2 h.实验时用无水乙醇与去离子水将工作电极与辅助电极表面冲洗干净,晾干后用砂纸打磨至镜面,参比电极仅使用细的金相砂纸打磨光亮即可.然后将钨丝与铂丝外套刚玉管与钨棒固定住组成三电极体系.将称好的NaCl-KCl-MgCl2置于刚玉坩埚内放置于电阻炉内缓慢加热至1 073 K,待炉内温度稳定30 min后,使用提拉炉精准控制三电极的升降操作.最后使用电化学工作站设备进行实验数据的测量及存储.

    温度为1 073 K时,NaCl-KCl-MgCl2熔盐体系当中相关化合物的理论分解电动势如表 3所列.

    表  3  理论分解电动势
    Table  3.  Theoretical decomposition potential
    下载: 导出CSV 
    | 显示表格

    表 3的理论分解电动势可以初步判断,MgCl2的理论分解电动势最正,在NaCl-KCl-MgCl2熔盐体系当中,Mg2+会优先在工作电极上得电子析出.故选取NaCl-KCl电解质体系研究Mg2+在钨电极上的电化学机理合理.

    为了更好地研究NaCl-KCl-MgCl2熔盐中Mg2+在钨电极上的电化学还原机理,首先对NaCl-KCl电解质进行循环伏安曲线测试,其结果如图 2所示,从图 2中可以看出电位在-2.0 V到-0.5 V之间,无氧化还原峰的产生,表明在-2.0 V到-0.5 V电势范围内,NaCl-KCl电解质的电化学性质稳定.当扫描电位从-2.0 V继续向负方向扫描,此时电解质当中的Na+开始得电子析出,随着扫描电位向负方向进一步增大K+开始得电子析出.

    图  2  1 073 K时NaCl-KCl电解质的循环伏安曲线(S=0.322 cm2
    Figure  2.  Cyclic voltammetry curve of NaCl-KCl electrolyte at 1 073 K(S=0.322 cm2)

    在NaCl-KCl电解质体系当中添加原料1 %MgCl2(质量百分数,下同),在1 073 K温度下,对熔盐体系进行循环伏安测试,结果如图 3所示.

    图  3  1 073 K时NaCl-KCl-1% MgCl2熔盐不同扫描速率下的循环伏安曲线(S=0.322 cm2
    Figure  3.  Cyclic voltammetry curves of NaCl-KCl- 1 %MgCl2 molten salt at different scanning rates at 1 073 K (S=0.322 cm2)

    图 3可以看出,电位负向扫描时在-1.38 V附近存在一个还原峰R1,电位正向回扫时在-0.90 V附近存在一个与还原峰R1相对应的氧化峰O1,表明:Mg2+在钨电极上的电化学还原是1步反应转移2个电子过程.随着扫描速率的增大,Mg2+还原峰电位负向移动.同时氧化峰电流(IPO)与还原峰电流(IPR)存在:|IPO /IPR|>1.5,且氧化峰与还原峰对称性较差,表明Mg2+在钨电极上的电化学还原是不可逆过程.

    根据Randles-seveik方程[13-14]:

    (1)

    图 3循环伏安数据作Ip-v1/2关系曲线,结果如图 4所示.

    图  4  1 073 K时还原峰值电流Ip与扫描速率v1/2关系曲线
    Figure  4.  Relationship between reduction peak current Ipand scan rate v1/2 at 1 073 K

    图 4可以看出拟合曲线呈良好线性,即Ip-v1/2有良好的线性关系,符合Randles-seveik方程,表明:1 073 K时NaCl-KCl-1 % MgCl2熔盐Mg2+在钨电极上的电化学还原受扩散控制.

    根据Heyrovsky-llkovic方程[15-17]:

    (2)

    图 3中扫描速率为0.1 V/s的循环伏安峰值处数据作E-ln[(Ip-I)/I]关系曲线,结果如图 5所示.

    图  5  1 073 K时E-ln[(Ip-I)/I]关系曲线
    Figure  5.  Relationship between E and ln[(Ip-I)/I] at 1 073 K

    图 5可以看出E-ln[(Ip-I)/I]之间呈线性,且拟合方程斜率为0.049 27,即RT/(nF)=0.049 27,n≈2.验证了R1峰即为Mg2+的还原峰.

    为了进一步验证循环伏安测试结果的可靠性. 1 073 K时,以MgCl2为原料,NaCl-KCl为电解质,测试NaCl-KCl-1 % MgCl2熔盐中Mg2+在钨电极上的不同恒电流条件下的计时电位曲线,结果如图 6所示.

    图  6  1 073 K时不同恒电流条件下镁在钨电极上的计时电位曲线(S=0.322 cm2
    Figure  6.  Chronopotentiometry curve of magnesium on tungsten electrode under different constant current conditions at 1 073 K(S=0.322 cm2)

    图 6可以看出,在-1.38 V附近与-2.5 V附近存在2个平台,其中第1个平台电位对应循环伏安曲线测试的R1峰析出电位,即Mg2+的析出电位.第2个平台电位对应电解质体系当中Na+与K+的析出电位.计时电位测试结果进一步验证了循环伏安测试结果的准确性.同时进一步说明了Mg2+在钨电极上是1步反应转移2个电子过程.此外发现随着施加电流强度的增加,过度时间在不断减小,电位平台向负方向移动,表明:1 073 K时NaCl-KCl-MgCl2熔盐中,Mg2+在钨电极上的电化学还原是受扩散控制的不可逆过程.

    在NaCl-KCl为电解质,MgCl2为原料,1 073 K时根据循环伏安当中Mg2+的析出电位范围内,测试镁在钨电极上的计时电流曲线,其结果如图 7所示.

    图  7  1 073 K时Mg2+在钨电极上的计时电流曲线(S=0.322 cm2
    Figure  7.  Chronoamperometry of Mg2+ on tungsten electrode at 1 073 K(S=0.322 cm2)

    图 7中电流迅速衰减即金属镁晶粒开始形成,当电流达到一定值后镁的新相开始形成不再继续长大,进而形成粉体从钨电极表面脱落,电流信号发生轻微的增大,随着Mg2+的不断析出,电极表面的Mg2+浓度下降,熔盐当中Mg2+向电极表面的扩散与Mg2+的析出最终会达到一个平衡状态.

    Mg2+在钨电极上的电化学还原受扩散控制,为了确定Mg2+的扩散系数引入Cottrel方程.

    Cottrel方程:

    (3)

    对计时电流曲线数据作I-t1/2关系图,结果如图 8所示.

    图  8  It-1/2的关系
    Figure  8.  Relationship between I and t-1/2

    根据方程(3)计算出熔盐中Mg2+的扩散系数为3.81×10-6 cm2/s

    为了进一步研究Mg2+在钨电极上的电结晶成核方式,使用2种成核理论进一步分析[18].

    对于瞬时成核存在方程(4):

    (4)

    对于渐进成核存在方程(5):

    (5)

    图 9图 10所示分别为1 073 K时在恒电位-1.38 V时极化电流It1/2It3/2关系曲线.对比图 9图 10可以看出:I-t3/2线性关系较差,I-t1/2之间呈良好的线性关系,符合瞬时成核方程.表明:Mg2+在钨电极上的电结晶过程是瞬时成核方式.

    图  9  I-t1/2/s1/2关系曲线
    Figure  9.  Relationship between I and t1/2
    图  10  I-t3/2/s3/2关系曲线
    Figure  10.  Relationship between I and t3/2

    1)1 073 K时,以MgCl2为原料,NaCl-KCl-1 %MgCl2熔盐中Mg2+在钨电极上的电化学还原是1步反应转移2个电子的不可逆过程,电极反应为:Mg2++2e-→Mg.

    2)1 073 K时,NaCl-KCl-1%MgCl2熔盐中,Mg2+在钨电极上的电结晶过程是瞬时成核方式.

  • 图  1   Ag2S-Ag2CO3,Ag2CO3@Ag2S和Ag2S@Ag2CO3的合成路线

    Fig  1.   Synthesis of Ag2S-Ag2CO3, Ag2CO3@Ag2S and Ag2S@Ag2CO3

    图  2   样品的XRD谱

    Fig  2.   vXRD patterns of the samples

    图  3   样品的SEM像

    Fig  3.   SEM images of catalyst samples

    图  4   典型样品的TEM像

    Fig  4.   TEM images of typical catalyst samples

    图  5   催化剂的表面性能谱图

    Fig  5.   Surface property spectrum of the prepared catalyst

    图  6   32 % Ag2S-Ag2CO3的高分辨XPS谱

    Fig  6.   High resolution XPS spectra of 32 % Ag2S-Ag2CO3

    图  7   样品的紫外可见漫反射光谱(UV-vis DRS)

    Fig  7.   UV-vis DRS of prepared samples

    图  8   不同样品在模拟太阳光(氙灯)下产生的光电流密度

    Fig  8.   Produced photocurrent density under simulative solar light irradiation (Xenon lamp) for different samples

    图  9   样品在可见光下降解甲基橙的光催化活性比较

    Fig  9.   Photocatalytic activity comparison of samples in the degradation of MO under visible light irradiation

    图  10   催化剂降解污染物的光催化活性比较

    Fig  10.   Photocatalytic activity comparison of the prepared photocatalysts in the degradation of pollutants

    图  11   Ag2S@Ag2CO3光催化活性增强的机理

    Fig  11.   Mechanism of enhanced photocatalytic performance in Ag2S@Ag2CO3

    图  12   光催化机理实验

    Fig  12.   Photocatalytic mechanism experiment

    表  1   样品的晶粒尺寸与比表面积

    Table  1   Grain size and specific surface area of all samples

    样品 晶粒尺寸/nm 比表面积/(m2·g-1)
    Ag2CO3 108.69 0.34
    Ag2S / 1.46
    4 % Ag2S-Ag2CO3 35.67 1.65
    8 % Ag2S-Ag2CO3 34.02 1.81
    16 % Ag2S-Ag2CO3 33.74 2.35
    32 % Ag2S-Ag2CO3 34.02 2.45
    40 % Ag2S-Ag2CO3 41.04 2.55
    32 % Ag2S-Ag2CO3 33.20 2.65
    32 % Ag2CO3@Ag2S 37.12 2.15
    注:“/”表示由于选取的参照晶面而无法计算.
    下载: 导出CSV

    表  2   催化剂在降解甲基橙中的准一级速率常数

    Table  2   Pseudo-first order rate constants of catalyst samples in the photocatalytic degradation of MO

    样品 速率常数(k)/min-1 相关系数(R2)
    Ag2CO3 0.006 4 0.99
    4 % Ag2S-Ag2CO3 0.010 5 0.99
    8 % Ag2S-Ag2CO3 0.017 9 0.99
    16 % Ag2S-Ag2CO3 0.026 3 0.97
    32 % Ag2S-Ag2CO3 0.030 5 0.97
    40 % Ag2S-Ag2CO3 0.025 3 0.98
    32 % Ag2S@Ag2CO3 0.045 8 0.97
    Ag2CO3@32 % Ag2S 0.037 5 0.99
    下载: 导出CSV

    表  3   催化剂样品光催化降解苯酚的准一级速率常数

    Table  3   Pseudo-first order rate constants of catalyst samples in the photocatalytic degradation of phenol

    样品 速率常数(k)/min-1 相关系数(R2)
    Ag2CO3 0.002 3 0.99
    4 % Ag2S-Ag2CO3 0.002 8 0.98
    32 % Ag2S-Ag2CO3 0.004 5 0.98
    40 % Ag2S-Ag2CO3 0.003 4 0.97
    32 % Ag2S@Ag2CO3 0.005 2 0.98
    Ag2CO3@32 % Ag2S 0.003 6 0.96
    下载: 导出CSV

    表  4   几种典型光催化剂对污染物降解的TOC去除率

    Table  4   TOC removal rate for different pollutants degradation over some typical photocatalysts

    样品 TOC去除率/%
    甲基橙[a] 苯酚[b] 双酚A[c]
    Ag2CO3 30 26 48
    4 % Ag2S-Ag2CO3 42 31 /
    32 % Ag2S-Ag2CO3 76 44 /
    40 % Ag2S-Ag2CO3 69 36 /
    32 % Ag2S@Ag2CO3 85 50 72
    Ag2CO3@32%Ag2S 78 37 /
    注:[a]:光照60 min,[b]和[c]:光照150 min, “/”表示未进行数据对照.
    下载: 导出CSV

    表  5   不同样品的稳定性测试结果

    Table  5   Results of the stability test of different samples

    样品 降解率/%
    第1次 第2次 第3次 第4次 第5次
    Ag2CO3 41 10 / / /
    32 % Ag2S-Ag2CO3 84 70 50 20 /
    32 % Ag2S@Ag2CO3 95 85 73 60 50
    Ag2CO3@32 % Ag2S 90 65 30 / /
    注:“/”表示降解率为零或者微弱可以忽略不计.
    下载: 导出CSV
  • [1]

    LAN Q, LI F B, LIU C S, et al. Heterogeneous photodegradation of pentachlorophenol with maghemite and oxalate under UV illumination[J]. Environmental Science & Technology, 2008, 42(21): 7918-7923. http://www.ncbi.nlm.nih.gov/pubmed/19031881

    [2]

    YU C L, FAN Q Z, XIE Y, et al. Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol[J]. Journal of Hazardous Materials, 2012, 237: 38-45. https://www.sciencedirect.com/science/article/pii/S0169433215015597

    [3]

    MA J, ZHANG L Z, WANG Y H, et al. Mechanism of 2, 4-dinitrophenol photocatalytic degradation by ζ-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation[J]. Chemical Engineering Journal, 2014, 251: 371-380. doi: 10.1016/j.cej.2014.04.085

    [4]

    ZHENG S, JIANG W J, CAI Y, et al. Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension[J]. Catalysis Today, 2014, 224: 83-88. doi: 10.1016/j.cattod.2013.09.040

    [5]

    CHANG L F, DONG R A. Cu-TiO2 nanorods with enhanced ultraviolet-and visible-light photoactivity for bisphenol A degradation[J]. Journal of Hazardous Materials, 2014, 277: 84-92. doi: 10.1016/j.jhazmat.2014.01.047

    [6] 李鑫, 余长林, 樊启哲, 等.溶剂热制备球状ZnS纳米光催化剂及其光催化性能[J].有色金属科学与工程, 2012, 3(3): 21-26. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201203005
    [7] 刘仁月, 吴榛, 白羽, 等.微米球光催化剂在环境净化及能源转化的研究进展[J].有色金属科学与工程, 2016, 7(6): 62-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060011
    [8]

    YU C L, JIMMY C Y, CHAN M. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres[J]. Journal of Solid State Chemistry, 2009, 182(5): 1061-1069. doi: 10.1016/j.jssc.2009.01.033

    [9]

    DLUGOSZ M, ZMUDZKI P, KWIECIE A, et al. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst[J]. Journal of Hazardous Materials, 2015, 298: 146-153. doi: 10.1016/j.jhazmat.2015.05.016

    [10] 白羽, 吴榛, 刘仁月, 等.花状Pt/Bi2WO6微米晶合成、表征及其高可见光催化性能[J].有色金属科学与工程, 2016, 7(2): 60-66. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602011
    [11] 何洪波, 薛霜霜, 余长林.钨基半导体光催化剂研究进展[J].有色金属科学与工程, 2016, 6(5): 32-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505007
    [12]

    YU C L, BAI Y, HE H B, et al. Synthesis, characterization and photocatalytic performance of rod-shaped Pt/PbWO4 composite microcrystals[J]. Chinese Journal of Catalysis, 2015, 36(12): 2178-2185. doi: 10.1016/S1872-2067(15)61009-9

    [13] 陈建钗, 薛霜霜, 余长林.稀土在非TiO2光催化剂的改性研究[J].有色金属科学与工程, 2015, 6(1): 99-105. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201501019
    [14]

    WU Q L, YANG X F, LIU J, et al. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17730-17739. https://core.ac.uk/display/71729143

    [15]

    YU C L, JIMMY C Y, ZHOU W Q, et al. WO3 coupled P-TiO2 photocatalysts with mesoporous structure[J]. Catalysis Letters, 2010, 140(3/4): 172-183. doi: 10.1007/s10562-010-0434-9

    [16]

    ZHANG M, CHEN C, MA W, et al. Visible-light-Induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO[J]. Angewandte Chemie, 2008, 120(50): 9876-9879. doi: 10.1002/ange.v120:50

    [17]

    GRÄTZEL M. Dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145-153. doi: 10.1016/S1389-5567(03)00026-1

    [18]

    GONG X Q, Selloni A, Dulub O, et al. Small Au and Pt clusters at the anatase TiO2 (101) surface: behavior at terraces, steps, and surface oxygen vacancies[J]. Journal of the American Chemical Society, 2008, 130(1): 370-381. doi: 10.1021/ja0773148

    [19]

    RODRIGUES S, RANJIT K T, Uma S, et al. Single-step synthesis of a highly active visible-Light photocatalyst for oxidation of a common indoor air pollutant: acetaldehyde[J]. Advanced Materials, 2005, 17(20): 2467-2471. doi: 10.1002/(ISSN)1521-4095

    [20]

    LIU G, ZHAO Y N, Sun C H, et al. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2[J]. Angewandte Chemie International Edition, 2008, 47(24): 4516-4520. doi: 10.1002/(ISSN)1521-3773

    [21]

    CHEN X F, WANG X C, HOU Y D, et al. The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation[J]. Journal of Catalysis, 2008, 255(1): 59-67. doi: 10.1016/j.jcat.2008.01.025

    [22]

    YU C L, LI G, KUMAR S, et al. Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity[J]. The Journal of Physical Chemistry Letters, 2013, 4(17): 2847-2852. doi: 10.1021/jz401447w

    [23]

    ZHANG J, CUI H, WANG B, et al. Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application[J]. Chemical Engineering Journal, 2013, 223: 737-746. doi: 10.1016/j.cej.2012.12.065

    [24]

    YU C L, CAO F F, LI G, et al. Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation[J]. Separation and Purification Technology, 2013, 120: 110-122. doi: 10.1016/j.seppur.2013.09.036

    [25]

    WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317

    [26]

    ZHOU X M, LIU G, YU J G, et al. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light[J]. Journal of Materials Chemistry, 2012, 22(40): 21337-21354. doi: 10.1039/c2jm31902k

    [27]

    GUAN X G, SHI J W, GUO L J. Ag3PO4 photocatalyst: hydrothermal preparation and enhanced O2 evolution under visible-light irradiation[J]. International Journal of Hydrogen Energy, 2013, 38(27): 11870-11877. doi: 10.1016/j.ijhydene.2013.07.017

    [28]

    CHEN G D, SUN M, WEI Q, et al. Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water[J]. Journal of Hazardous Materials, 2013, 244: 86-93. http://www.doc88.com/p-7857712762212.html

    [29]

    KATSUMATA H, TANIGUCHI M, KANECO S, et al. Photocatalytic degradation of bisphenol A by Ag3PO4 under visible light[J]. Catalysis Communications, 2013, 34: 30-34. doi: 10.1016/j.catcom.2013.01.012

    [30]

    WANG P, MING T S, WANG G H, et al. Cocatalyst modification and nanonization of Ag/AgCl photocatalyst with enhanced photocatalytic performance[J]. Journal of Molecular Catalysis A: Chemical, 2014, 381: 114-119. doi: 10.1016/j.molcata.2013.10.013

    [31]

    MA B, GUO J F, DAI W L, et al. Highly stable and efficient Ag/AgCl core–shell sphere: controllable synthesis, characterization, and photocatalytic application[J]. Applied Catalysis B: Environmental, 2013, 130: 257-263. http://npd.nsfc.gov.cn/projectDetail.action?pid=20877061

    [32]

    YAN T J, ZHANG H W, LUO Q, et al. Controllable synthesis of plasmonic Ag/AgBr photocatalysts by a facile one-pot solvothermal route[J]. Chemical Engineering Journal, 2013, 232: 564-572. doi: 10.1016/j.cej.2013.08.021

    [33]

    ZHANG C H, AI L H, LI L L, et al. One-pot solvothermal synthesis of highly efficient, daylight active and recyclable Ag/AgBr coupled photocatalysts with synergistic dual photoexcitation[J]. Journal of Alloys and Compounds, 2014, 582: 576-582. doi: 10.1016/j.jallcom.2013.08.028

    [34]

    XU X, SHEN X P, ZHOU H, et al. Facile microwave-assisted synthesis of monodispersed ball-like Ag@AgBr photocatalyst with high activity and durability[J]. Applied Catalysis A: General, 2013, 455: 183-192. doi: 10.1016/j.apcata.2013.01.035

    [35]

    WANG X, UTSUMI M, YANG Y N, et al. Removal of microcystins (-LR, -YR, -RR) by highly efficient photocatalyst Ag/Ag3PO4 under simulated solar light condition[J]. Chemical Engineering Journal, 2013, 230: 172-179. doi: 10.1016/j.cej.2013.06.076

    [36]

    POURAHMAD A. Ag2S nanoparticle encapsulated in mesoporous material nanoparticles and its application for photocatalytic degradation of dye in aqueous solution[J]. Superlattices and Microstructures, 2012, 52(2): 276-287. doi: 10.1016/j.spmi.2012.05.009

    [37]

    ZHANG H L, WEI B, ZHU L, et al. Cation exchange synthesis of ZnS-Ag2S microspheric composites with enhanced photocatalytic activity[J]. Applied Surface Science, 2013, 270: 133-138. doi: 10.1016/j.apsusc.2012.12.140

    [38]

    WANG Y R, YANG W L, ZHANG L, et al. Formation of MS–Ag and MS (M=Pb, Cd, Zn) nanotubes via microwave-assisted cation exchange and their enhanced photocatalytic activities[J]. Nanoscale, 2013, 5(22): 10864-10867. doi: 10.1039/c3nr03909a

    [39]

    LI J J, YANG W, NING J Q, et al. Rapid formation of AgnX (X=S, Cl, PO4, C2O4) nanotubes via an acid-etching anion exchange reaction[J]. Nanoscale, 2014, 6(11): 5612-5615. doi: 10.1039/C4NR00364K

    [40]

    LI J J, XIE Y L, ZHONG Y J, et al. Facile synthesis of Z-scheme Ag2CO3/Ag/AgBr ternary heterostructured nanorods with improved photostability and photoactivity[J]. Journal of Materials Chemistry A, 2015, 3(10): 5474-5481. doi: 10.1039/C4TA06075J

    [41]

    BI Y P, OUYANG S X, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 133(17): 6490-6492. doi: 10.1021/ja2002132

    [42] 魏龙福, 余长林, 陈建钗, 等.水热法合成Ag2CO3/ZnO异质结复合光催化剂及其光催化性能[J].有色金属科学与工程, 2014, 5(1): 47-53. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401009
    [43]

    LI J D, FANG W, YU C L, et al. Ag-based semiconductor photocatalysts in environmental purification[J]. Applied Surface Science, 2015, 358: 46-56. doi: 10.1016/j.apsusc.2015.07.139

    [44]

    YANG J H, WANG D E, HAN H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1900-1909. doi: 10.1021/ar300227e

    [45]

    JU P, WANG P, LI B, et al. A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity[J]. Chemical Engineering Journal, 2014, 236: 430-437. doi: 10.1016/j.cej.2013.10.001

    [46]

    YU C L, LI G, KUMAR S, et al. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants[J]. Advanced Materials, 2014, 26(6): 892-898. doi: 10.1002/adma.v26.6

    [47]

    YU C L, WEI L F, CHEN J C, et al. Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 5759-5766. doi: 10.1007/s11434-011-4476-1

    [48]

    YANG W L, ZHANG L, HU Y, et al. Microwave-assisted synthesis of porous Ag2S–Ag hybrid nanotubes with high visible-light photocatalytic activity[J]. Angewandte Chemie International Edition, 2012, 51(46): 11501-11504. doi: 10.1002/anie.201206715

    [49]

    PANG M L, ZENG H C. Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives[J]. Langmuir, 2010, 26(8): 5963-5970. doi: 10.1021/la904292t

    [50]

    ZEHNDER E J. Intermolecular vibrational coupling in silver carbonate, Ag2CO3[J]. Journal of Molecular Structure, 1983, 98(1/2): 49-53. doi: 10.1146/annurev.pc.41.100190.001011

    [51]

    KOGA N, YAMADA S, KIMURA T. Thermal decomposition of silver carbonate: phenomenology and physicogeometrical kinetics[J]. The Journal of Physical Chemistry C, 2012, 117(1): 326-336. doi: 10.1021/jp309655s

    [52]

    MARTINA I, WIESINGER R, JEMBRIH-SIMBURGER D, et al. Micro-Raman characterisation of silver corrosion products: instrumental set up and reference database[J]. E-Preservation Science, 2012, (9): 1-8. https://core.ac.uk/display/27737261

    [53]

    JING L Q, SUN Z H, YUAN F L, et al. The effects of La and Cu doping on the photogenerated charges over nano-TiO2 and the relationship between photocatalytic activity and photogenerated charges[J]. Science China Chemistry, 2006, 36: 53-57. https://www.sciencedirect.com/science/article/pii/S0009261414008318

    [54]

    YU C L, ZHOU W Q, ZHU L H, et al. Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 184: 1-11. doi: 10.1016/j.apcatb.2015.11.026

    [55]

    ZHOU Y B, GU X C, ZHANG R Z, et al. Influences of various cyclodextrins on the photodegradation of phenol and bisphenol A under UV light[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 426-433. doi: 10.1021/ie503414k

    [56]

    WANG N, ZHU L H, LEI M, et al. Ligand-induced drastic enhancement of catalytic activity of nano-BiFeO3 for oxidative degradation of bisphenol A[J]. ACS Catalysis, 2011, 1(10): 1193-1202. doi: 10.1021/cs2002862

    [57]

    DAI G, YU J, LIU G. A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity[J]. The Journal of Physical Chemistry C, 2012, 116(29): 15519-15524. doi: 10.1021/jp305669f

    [58]

    DAI G P, YU J G, LIU G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2011, 115(15): 7339-7346. doi: 10.1021/jp200788n

    [59]

    YU C L, YANG K, SHU Q, et al. Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts[J]. Science China Chemistry, 2012, 55(9): 1-9. doi: 10.1007/s11426-012-4721-8

    [60]

    JIN X Y, MOK E K, BAEK J W, et al. Importance of the tuning of band position in optimizing the electronic coupling and photocatalytic activity of nanocomposite[J]. Journal of Solid State Chemistry, 2015, 230: 175-181. doi: 10.1016/j.jssc.2015.07.006

    [61]

    YAO X X, LIU X H. One-pot synthesis of ternary Ag2CO3/Ag/AgCl photocatalyst in natural geothermal water with enhanced photocatalytic activity under visible light irradiation[J]. Journal of Hazardous Materials, 2014, 280: 260-268. doi: 10.1016/j.jhazmat.2014.07.079

    [62]

    WANG P, HUANG B B, ZHANG X Y, et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr[J]. Chemistry-A European Journal, 2009, 15(8): 1821-1824. doi: 10.1002/chem.v15:8

    [63]

    WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie International Edition, 2008, 47(41): 7931-7933. doi: 10.1002/anie.v47:41

    [64]

    YU C L, WEI L F, ZHOU W Q, et al. Enhancement of the visible light activity and stability of Ag2CO3 by formation of AgI/Ag2CO3 heterojunction[J]. Applied Surface Science, 2014, 319: 312-318. doi: 10.1016/j.apsusc.2014.05.158

    [65]

    LI J D, WEI L F, YU C L, et al. Preparation and characterization of graphene oxide/Ag2CO3 photocatalyst and its visible light photocatalytic activity[J]. Applied Surface Science, 2015, 358: 168-174. doi: 10.1016/j.apsusc.2015.07.007

    [66]

    ISHIBASHI K I, FUJISHIMA A, WATANabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique[J]. Electrochemistry Communications, 2000, 2(3): 207-210. doi: 10.1016/S1388-2481(00)00006-0

    [67]

    JIANG H Y, CHENG K, LIN J. Crystalline metallic Au nanoparticle-loaded α-Bi2O3 microrods for improved photocatalysis[J]. Physical Chemistry Chemical Physics, 2012, 14(35): 12114-12121. doi: 10.1039/c2cp42165h

  • 期刊类型引用(5)

    1. 孙德武,张健峰,翟宏菊,关壬铨,吕雪莲,赵佳琪,刘金昊,刘晓雯. Ag_2CO_3-Ag_2S复合材料的制备、表征及其可见光催化降解罗丹明B活性研究. 吉林师范大学学报(自然科学版). 2019(01): 18-22 . 百度学术
    2. 张萌迪,陈范云,马小帅,杨凯,余长林. 纳微结构Ag_2CO_3光催化材料的制备及其在光催化的应用. 有色金属科学与工程. 2019(02): 52-61 . 本站查看
    3. 王书红,刘新,孔斌,卢家伟,李鸿,刘烈泉,王津津,陈娟,黄微雅. CeO_2/Bi_2MoO_6纳米复合材料的制备及其增强光催化降解性能研究. 有色金属科学与工程. 2019(02): 68-76 . 本站查看
    4. 杜瑞安,马小帅,张萌迪,陈范云,余长林. 多壁碳纳米管/TiO_2复合材料的合成及其光催化性能. 有色金属科学与工程. 2019(05): 75-84 . 本站查看
    5. 马小帅,陈范云,张萌迪,杨凯,余长林. g-C_3N_4基光催化剂的制备和应用. 有色金属科学与工程. 2018(03): 42-52 . 本站查看

    其他类型引用(3)

图(12)  /  表(5)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  55
  • PDF下载量:  3
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-05-21
  • 发布日期:  2017-12-30
  • 刊出日期:  2017-11-30

目录

/

返回文章
返回