Waveform change rule of wavelet across viscoelasticity joint
-
摘要: 将岩体和节理抽象为Kelvin黏弹性介质,建立谐波穿过黏弹性节理的传播模型,分析了谐波在黏弹性节理的透、反射系数和子波穿过节理后的波形变化规律.研究结果表明,黏弹性节理具有低通滤波特性,导致Ricker子波穿过黏弹性节理后,透射波振幅减小,主瓣不突出,波形在时域上变得更平缓;波形相关系数主要反映子波穿过黏弹性节理后发生的相位变化,而波形变化系数能综合反映子波的振幅和相位变化,因而两者描述子波波形变化时具有不同的变化规律;相对于切向刚度和切向黏性系数,节理的法向刚度和法向黏性系数对子波波形变化影响更大.Abstract: The rock mass and joints are assumed as viscoelastic media to establish the propagation model of harmonic wave across viscoelastic joint. The transmission and reflection coefficient of harmonic wave across viscoelastic joint and waveform change rule of wavelet through joint are analyzed. The results indicate that viscoelastic joint has the low-pass filter property which leads to the decrease of the transmitted wave amplitude, the less prominent of the major lobe of waveform diagram of transmitted wave and the flatter of the waveform curve of transmitted wave after Ricker wavelet across viscoelastic joint; the phase change of wavelet propagation in viscoelastic joint can be described effectively by using correlation coefficient of waveform while the waveform change coefficient can reflect comprehensively the amplitude and phase change of wavelet, so the change rules are different when the wavelet waveform is analyzed by these two different coefficients; compared with shear stiffness and tangential viscosity coefficient, the normal stiffness and normal viscosity coefficient of the joints have greater effect on wavelet waveform change.
-
离子型稀土富含世界上短缺的中、重稀土元素,具有很高的经济与战略价值,被我国政府列为保护型开采的矿种之一[1-2].含稀土离子的母岩经风化、溶解,产生稀土阳离子,阳离子经黏土矿物吸附富集而形成离子吸附型稀土矿[3-6].离子型稀土矿一般赋存于花岗岩等火成岩的风化壳中,矿体呈层状分布于被风化、剥蚀、冲刷而形成的准丘陵地带中[7-10].该矿种埋藏较浅,所在山体由浅往深部一般是表土层、全风化层、半风化层、微风化层和基岩,稀土离子主要存在全风化层和半风化层中[11].针对离子型稀土矿,目前主要采用地表原地浅井浸出[12].浸矿施工时,由于向山体风化矿层注入大量浸出药剂,使风化矿层含液量增加,同时浸出药剂与稀土矿的置换过程会减小风化矿层的强度参数,使风化矿层稳定性变差,进而发生滑坡[13-14].基于此,本文通过FLAC3D的流固耦合的实例分析,研究某稀土矿山持续注液对山体边坡的孔压场、位移场和安全系数的影响情况.研究结果为离子型稀土矿原地浸矿采场的施工提供理论依据.
1 某稀土矿工程概况
该稀土矿山体浅层为厚约1~10 m的表土层、全风化矿层,为离子型稀土赋存层,下部基岩为完整性好的花岗岩,是山体含水层下隔水体.山体边坡长约50 m,宽约30 m,高约30 m,山体坡度25°~40°;矿区植被多处中幼龄;矿区地表水主要是山间沟谷溪流,平水期水流量约0.5~100 L/s,受季节影响较大.矿山平均每天向山体内部注入约100 m3浸矿药剂,有研究结果表明,当液固比为0.8时能有效控制母液量和母液浓度[15].图 1为该矿山原地浸矿边坡剖面图.
2 数值计算模型及边界条件
2.1 几何模型
建立数值模型时网格的划分影响到计算的效率. FLAC3D的流固耦合分析模型包含流、固体2种模型,FLAC3D在流固耦合问题上需要加倍的计算步,网格划分的疏密程度极大地影响计算的速度,因此在建模时将数值模型含矿层网格划分较密,基岩强度较高,形变小,网格划分相对较疏.本次数值模型建立过程如下:将原地浸矿边坡的左下侧角点定义为原点O(0,0),边坡最右侧边界的X=50 m;数值模型的底部边界的Z=-10 m,顶部边界纵坐标Z=30 m,边坡总面积约为800 m2.为简化计算,将三维边坡稳定分析简化为二维的平面问题,平面应变计算模型如图 2所示,从上往下分别是全风化矿层、半风化层、基岩,模型单元数为10 600,节点数13 131.
2.2 边界条件及参数
依据数值模型及原地浸矿施工工艺的特点,确定流固体分析的力学边界条件时固定X=-10 m、X=50 m面的水平位移,固定Y轴方向的前后边界的水平位移,固定Z=-10 m面的垂直位移.做流体分析时设置基岩为不渗透材料,设置坡面与坡顶面为透水自由面.
对岩土工程数值分析影响较大的是材料的物理力学参数,其取值的准确性与合理性直接关系到计算结果的准确性.参考类似矿山及岩土质材料强度参数,本次数值分析材料物理力学参数见表 1所示.
表 1 模型材料物理力学参数Table 1. Material physical and mechanical parameters3 注液边坡稳定性数值分析
根据基岩在山脚出露与否,集液时采用明沟和暗沟来集液.明沟集液的集液明沟设置在山脚沟谷部位,紧挨矿体一侧,浸出液能沿基岩斜面向山体坡面渗出,进入集液明沟.暗沟网集液的暗集液沟是由地表的坡脚处向山体内打高1.6 m、宽0.6 m的倾斜梯形暗沟,浸出液沿暗沟流出地表.本研究的稀土矿实例中基岩在山体坡脚处出露,浸出液能沿基岩渗出到地表,因此采用明沟集液的原地浅井浸出法采矿.
本次数值分析计算设置为岩土的干密度,由FLAC3D软件自动计算每个单元的饱和重度.流固耦合分析计算过程为:① 计算含矿山体边坡的原始应力;② FLAC3D流固耦合排水分析中,孔压场不与应力场耦合,可以加快运算速率.计算中先单渗流计算,后单力学计算.
3.1 孔隙水分析
浸矿注液使山体坡含液量迅速增加,溶浸液沿基岩斜面向下渗流,并在基岩斜面最先达到饱和,形成有一定厚度的饱和体.注液施工持续时,前期注液量大于渗出的集液量,饱和体厚度增大,液面逐渐接近山体坡面.中期注液量与集液量相当,饱和体厚度将不变,后期注液量减小或停止注液时,饱和体厚度减小.注液量为100 m3/d的不同时刻坡体孔隙水压力云图如图 3所示.因FLAC3D渗流计算中默认未饱和体的孔隙水压力为0,因此认为图 3中蓝色区域均未饱和.由图 3(a)~图 3(d)可以看出,饱和体厚度迅速增大,在坡脚位置增大最快,说明注液5~20 d内的溶浸液注入速度大于浸出液渗出速度.由图 3(d)~图 3(f)可知,饱和体厚度基本不变,说明注液20~30 d内溶浸液注入速度与浸出液渗出速度持平,且注液20 d时饱和矿层与近地表风化层(注液孔区域先受注液渗流浸润作用)都能受到浸矿液浸润. 图 4是孔隙水压力随注液时间变化的折线图.由图 4可以看出,注液5 d、10 d、15 d、20 d、25 d、30 d的孔隙水压力为37.75 kPa、53.11 kPa、69.57 kPa、93.82 kPa、96.51 kPa、97.36 kPa.这些数据可以说明,注液5~20 d的孔隙水压力每5 d最少增大15.36 kPa,20 d后每5 d最大增加2.69 kPa,说明注液20 d后,浸矿边坡每天的注液量比收液量略大.
3.2 位移分析
原地浅井浸出法的施工过程中,浸矿药剂从注液孔注入,使风化矿层岩土的黏结力降低.文献[15]的研究表明,原地浸矿使风化矿层的黏结力在15 d内会减小50 %,因此在模拟分析中需对边坡材料参数进行折减.本次模拟分析中的参数折减方案是:在注液中的第5 d、10 d、15 d,将风化矿层的内聚力折减为注液前的0.85、0.7、0.5倍.
在FLAC3D渗流模式下的原地浅井浸出分析表明,随着注液施工的进行,使原本稳定的边坡发生了较大位移.图 5为注液达20 d的边坡垂直位移云图,图 6为边坡最大垂直位移随注液时间累积折线图.从图 5~图 6可以看出,注液后边坡产生较大位移,边坡注液5 d、10 d、15 d、20 d的最大位移分别是-2.79 mm、-4.66 mm、-10.33 mm、-24.44 mm(文中位移为负,表示位移方向与坐标正轴方向相反,),注液期前期山体内部溶液相对较少,溶浸液与稀土离子的交换反映较缓慢,对岩土边坡的总体强度影响较小,边坡是稳定的.当注液时间达15~20 d时,坡体含液量大,大部分风化矿层都受到溶浸液的浸润作用,离子交换反映剧烈,加上溶液自重的影响,边坡稳定性变差,发生较大位移.当注液时间超过20 d时,计算不收敛,坡脚位置全风化层全部为剪应力屈服状态,表明已经发生滑坡,滑面为全风化矿层沿半风化层滑移.分析表明:连续注液超过20 d时,边坡越来越趋近滑坡临界点,应采取维护措施防止滑坡.
3.3 安全系数计算
使用FLAC3D对边坡稳定性安全系数进行求解,得到边坡持续注液20 d内不同时间点的安全系数. 图 7为安全系数变化折线图.由图 7可以看出:未浸矿施工时的安全系数是1.74;施工5 d后边坡安全系数是1.71,与未施工时的安全系数相比变化较小,边坡较稳定;施工10 d、15 d对应的安全系数是1.64、1.56,可以看出浸矿药剂开始发挥作用,减小了坡体岩土强度,对边坡稳定性影响较大;当施工时间达20 d时对应边坡安全系数是1.31,是因为浸矿药剂使边坡的黏结力大幅度减小,而大量药剂存于坡体内增大坡体自重.根据图 7折线曲率变化,以及注液量依旧偏大,当注液达到20~25 d,边坡安全系数将越来越趋近于1.上述分析表明:随着浸矿注液量及浸矿时间的增加,土体含液量大幅增加,黏结力不断减小,使得边坡从稳定状态趋于不稳定状态.
3.4 暗沟集液
根据以上对边坡浸矿的数值分析可知,边坡在注液20 d后的每天浸出母液量比注液量略小,孔隙水压力虽缓慢增大,但位移迅速增大,说明边坡处于不稳定状态.认为20 d后100 m3/d的注液量过大,应适当减小.
为使浸矿施工能持续进行,且不影响浸矿效率,注液量的减小应适当,另可通过在坡脚处开挖暗沟,增加浸出液渗出通道,让坡脚处及附近区域的浸出母液快速流出,以减小坡体的含液量,维持边坡稳定.参考类似暗沟开挖工艺,认为暗沟的布置为高1.6 m,宽0.6 m左右的倾斜梯形暗沟,暗沟间距8 m,每米沟的渗液面积达到4 m2,可以达到很好的收液效果.
为不影响前期注液,暗沟从注液的第20 d开始向外导出浸出液为最佳,则暗沟的开挖时间应该在注液第20 d左右,考虑施工的安全,可根据现场实际情况,将暗沟用密集的倒流管代替.注液第20 d将注液量减小到80 m3/d.图 8~图 9为注液第30 d的孔隙水压力云图和位移云图.图 8中黑色网格为暗沟位置,暗沟延伸至基岩面,计算中设置暗沟为自由透水边界.从图 8可以看出暗沟起到了截流的作用.计算结果表明,注液25 d、30 d的最大孔隙水压力分别为85.33 kPa、85.61 kPa,说明25~30 d内的孔隙水压力变化很小.和开挖暗沟前相比较,第20 d的孔隙水压力明显更小.由图 8可知边坡坡脚处溶液大部分释放出来,边坡最大位移为-26.16 mm. 图 10为30 d内边坡最大位移累积折线图,由图 10可知开挖暗沟后边坡位移变化很小.继续对边坡安全系数求解可得第25 d、30 d的安全系数均为1.27,也说明暗沟对维持边坡稳定起到重要作用.
4 结论
运用FLAC3D软件可以有效模拟计算离子型稀土原地浸矿边坡孔隙水压力、位移、安全系数随注液时间的变化.模拟分析结果表明:
1)注液20 d后,坡体内部饱和液面能覆盖大部分风化矿层.注液持续到5 d、10 d、15 d、20 d时,边坡最大孔隙水压力分别为37.75 kPa、53.11 kPa、69.57 kPa、93.82 kPa,变化较大,20 d、25 d时边坡最大孔压为96.51 kPa、97.36 kPa,变化较小,说明注液0~20 d平均每天注液量远大于集液量,开挖暗沟后5 d内平均每天注液量极为接近集液量.
2)边坡在注液0~20 d内位移不断增大,第20 d时最大位移达-24.44 mm.开挖集液暗沟后,第5 d、10 d(即注液第25 d、30 d)边坡最大位移值为-25.26 mm、-26.16 mm,相比第20 d的位移值变化较小,边坡是稳定的.
3)随着注液施工的进行,边坡安全系数在注液的第0 d、5 d、10 d、15 d、20 d分别为1.74、1.71、1.64、1.56、1.31,开挖暗沟后5 d内边坡的安全系数稳定在1.27,表明边坡能维持稳定,集液暗沟起到重要作用.
-
[1] Yang P J, Pan Y, Mu X, et al.Mixed-phase seismic wavelet extraction of SIMO systemby subspacemethod[J]. Journal of China University of Petroleum, 2010, 34(1):41-45. https://www.researchgate.net/publication/290632974_Mixed-phase_seismic_wavelet_extraction_of_SIMO_system_by_subspace_method
[2] 黄润秋.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社, 2002:4. [3] 赵莹.小波分析在松辽盆地北部高分辨率层序地层学中的应用[J].物探与化探, 2013, 37(2):310-313. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201302027.htm [4] Shatilo A P, Sondergeld C S. Ultrasonic attenuation in Glenn Pool rocks, northeastern Oklahoma[J]. Geophysics, 1998, 63: 465-478. doi: 10.1190/1.1444348
[5] Gaviglio P.Longitudinal waves propagation in a limestone: The relationship between velocities and density[J].Rock Mechanics and Rock Engineering, 1989, 22(4):290-299. https://www.researchgate.net/publication/226605473_Longitudinal_waves_propagation_in_a_limestone_The_relationship_between_velocity_and_density
[6] Mckenzie C K, Stacey G P, Gladwin M T.Sonic wave characteristics of rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 1982, 19(1):25-30. doi: 10.1016/0148-9062(82)90707-0
[7] Cai J G, Zhao J.Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses[J].International Journal of Rock Mechanics and Mining Sciences, 2000, 37:661-682. doi: 10.1016/S1365-1609(00)00013-7
[8] Zhao J, Zhou Y X, Hefny A M, et al. Rock dynamic research related to cavern development for ammunition storage[J].Unnelling and Underground Space Technology, 1999, 14(4):513-526. doi: 10.1016/S0886-7798(00)00013-4
[9] 俞缙, 钱七虎, 林从谋, 等.P波在改进的弹性非线性法向变形行为单节理处的传播特性研究[J].岩土工程学报, 2009, 31(8):1156-1164. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200908005.htm [10] 王卫华, 李夕兵, 左宇军.非线性法向变形节理对弹性P波传播的影响[J].岩石力学与工程学报, 2006, 25(6):1218-1225. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606021.htm [11] 吴庆曾, 李洪涛, 杨进平.声波检测穿透信号波形变化规律和量化的探讨[J].物探与化探, 2012, 36(1):144-148. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201201030.htm [12] 谢忠球, 肖宏彬, 李珍玉, 等.边坡软弱层评价中全波列声波测井的理论与实验研究[J].中南林业科技大学学报, 2010, 30(8):108-111. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201008024.htm [13] 樊耀新.断层对地震子波波形影响的研究[J].西北地震学报, 1996, 18(3):54-59. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ603.008.htm [14] 王小杰, 印兴耀, 吴国忱.粘弹性介质地震波传播特征及反射特征研究[J].物探化探计算技术, 2012, 34(3):258-266. http://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201203003.htm