Abstract:
To investigate interface properties of molten Sn-3.0Ag-0.5Cu solder melting on the inclined Cu substrate, numerical simulation is carried out by Surface Evolver at 490 K with wetting experiments. Profile curves of the droplets are fitted with empirical equation, which are proposed to obtain preferable contact angles. According to the experimental results, it is indicated that the contact line hardly moves at the very beginning and the rear point of triple line moves forward along the substrate subsequently, but the front point of triple line is still pinned on the substrate. Correspondingly"the advancing contact angle gradually increases to the peak value. When the inclined angle of the substrate continues to increase, the advancing contact angle decreases along with the front point of triple line moving forward, and finally the drop slides down from the substrate. In this paper, contact angle hysteresis is characterized by the numerical simulation. Furthermore, the interface microstructure is observed by means of SEM and EDS. It is illustrated that the interfacial chemical reaction happens in the wetting process which determines the formation of intermetallic Cu
6Sn
5 that distributes as the scallop shape.