Citation: | YANG Jiguang, WANG Zengjia, GUO Jiaren, WANG Pengtao, LIU Jie, SANG Laifa, SHENG Yuhang, JING Xiaodong. Research on mechanical characteristics and neural network prediction analysis of crushed stone tailings collaborative cementing filling in a gold mine[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 104-114. DOI: 10.13264/j.cnki.ysjskx.2025.01.012 |
This article focuses on the crushing of gold mine waste into crushed stones and full tailings below 5 mm. Under the conditions of preparing paste filling slurry, uniaxial compressive strength and tensile strength tests were conducted on the filling material under different parameters, and single-factor and multi-factor fitting analysis and correlation testing were conducted. The correlation between various influencing factors and the strength of the filling body was determined. The influence of various factors on the strength of the paste-filling body was explored. A predictive model was established using an improved MATLAB neural network to predict the effects of slurry concentration X1, cement sand ratio X2, sand gravel ratio X3, and curing age X4 on the strength (uniaxial compressive strength Y1, tensile strength Y2) of the filling material. The results show that there is a multivariate linear function relationship between the strength of the filling body and various parameters. The lime-sand ratio is the main factor affecting the strength of the filling body, followed by the curing age and sandstone ratio, and the slurry concentration is the smallest. The strength of the filling body increases with the increase of filling concentration, curing period, and lime sand ratio, and decreases with the increase of sand stone ratio. The established strength function model of the filling body has strong adaptability and high accuracy in predicting the uniaxial compressive strength Y1 and compressive strength Y2 of the gold mine, which provides a basis for the design of the strength demand of later filling mining.
[1] |
吴爱祥,王洪江. 金属矿膏体充填理论与技术[M]. 北京:科学出版社,2015:1-2.
|
[2] |
刘同有,金铭良,王佩勋,等. 充填采矿技术与应用[M]. 北京:冶金工业出版社,2001.
|
[3] |
ESWARAIAH C,BISWAL S K,MISHRA B K. Settling characteristics of ultrafine iron ore slimes[J]. International Journal of Minerals Metallurgy and Materials,2012,19(2):95-99.
|
[4] |
CAO S, SONG W D, DENG D, et al.Numerical simulation of land subsidence and verification of its character for an iron mine using sublevel caving[J].International Journal of Mining Science and Technology, 2016, 26(2):327-332.
|
[5] |
ALDHAFEERI Z,FALL M. Time and damage induced changes in the chemical reactivity of cemented paste backfill[J]. Journal of Environmental Chemical Engineering,2016,4(4):4038-4049.
|
[6] |
唐国星,郭利杰,刘光生,等. 尾砂胶结充填体抗拉强度试验及其影响因素研究[J]. 中国矿业,2022,31(4):124-131.
|
[7] |
刘可任. 充填理论基础[M]. 北京:冶金工业出版社,1982.
|
[8] |
尹升华,邵亚建,吴爱祥,等. 含硫充填体膨胀裂隙发育特性与单轴抗压强度的关联分析[J]. 工程科学学报,2018, 40(1):9-16.
|
[9] |
CHEN Q S,ZHANG Q L, FOURIE A, et al. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill[J]. Journal of Environmental Management,2017,201:19-27.
|
[10] |
葛海源,陈超,李洪宝,等. 超细全尾砂充填体强度增长规律试验研究[J]. 现代矿业,2014,30(7):10-13.
|
[11] |
付建新,杜翠凤,宋卫东. 全尾砂胶结充填体的强度敏感性及破坏机制[J]. 北京科技大学学报,2014,21(9):1149-1157.
|
[12] |
占飞,付玉华,杨世兴. 某铜矿胶结充填体的强度值设计[J]. 有色金属科学与工程,2018,9(2):75-80.
|
[13] |
曹帅,宋卫东,薛改利,等. 考虑分层特性的尾砂胶结充填体强度折减试验研究[J]. 岩土力学,2015,36(10):2869-2876.
|
[14] |
YIN W, ZHANG K, OUYANG S Y, et al.Experimental study on gangue backfilling materials improved by soda residue and field measurement of surface subsidence[J].Frontiers in Earth Science, 2021(9): 747675.
|
[15] |
SUN Q, ZHANG J X, ZHOU N.Early-age strength of aeolian sand-based cemented backfilling materials: experimental results[J].Arabian Journal for Science & Engineering,2018,43(4):1697-1708.
|
[16] |
郭慧高,武拴军,尹升华,等. 冶炼铜选尾渣对废石粗骨料充填料浆特性改性研究[J].金属矿山,2021(4):53-58.
|
[17] |
严荣富,尹升华,刘家明,等. 掺聚丙烯纤维粗骨料膏体流变性能及计算模型[J].中南大学学报(自然科学版),2022,53(4): 1450-1460.
|
[18] |
何建元,李宏业,高谦,等. 采矿废石-尾砂混合骨料在下向分层进路胶结充填采矿中应用的试验研究[J]. 黄金科学技术, 2021,29(4):564-572.
|
[19] |
王洪江,杨亚楠,王小林. 不同粗骨料对膏体强度性能的影响及配比优化[J]. 金属矿山,2022(1):120-127.
|
[20] |
尹升华,侯永强,杨世兴,等. 单轴压缩下混合集料胶结充填体变形破坏及能耗特征分析[J]. 中南大学学报(自然科学版), 2021,52(3):936-947.
|
[21] |
卓毓龙,陈辰,曹世荣等. 不同块石配比充填体的强度特性研究[J]. 有色金属科学与工程,2016,7(5):72-75.
|
[22] |
卓庆奉,巴蕾,王奇峰. 掺粉煤灰的混合充填骨料配比优化实验[J]. 矿产综合利用,2021(3):187-192,199.
|
[23] |
于恩毅,黄旭东,龚甲桂. 基于RSM-BBD的废石—全尾砂胶结充填体强度试验研究[J]. 矿业研究与开发,2020,40(7):75-80.
|
[24] |
巴蕾,韦寒波,温震江,等. 废石—铜渣尾砂混合骨料配比优化试验[J]. 矿业研究与开发,2020,40(2):31-37.
|
[25] |
刘恒亮,张钦礼,王新民,等. 全尾砂充填体正交-BP神经网络强度预测[J]. 金属矿山,2016(1):47-50.
|
[26] |
徐淼斐,高永涛,金爱兵,等. 基于超声波波速及BP神经网络的胶结充填体强度预测[J]. 工程科学学报,2016,38(8):1059-1068.
|
[27] |
董越,杨志强,高谦. 正交试验协同BP神经网络模型预测充填体强度[J]. 材料导报,2018,32(6):1032-1036.
|
[28] |
何荣军,杜运夯,吴再生. 基于MMAS-BP神经网络的粉煤灰膏体管道输送水力坡度预测[J]. 煤矿安全,2018,49(6):217-220.
|
[29] |
ARMAGHANI D J,MOHAMAD E T,NARAYANASAMY M S,et al. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition[J]. Tunnelling and Underground Space Technology,2017,63:29-43.
|
[30] |
HASSAN W H. Application of a genetic algorithm for the optimization of a location and inclination angle of a cut off wall for anisotropic foundations under hydraulic structures[J]. Geotechnical and Geological Engineering,2019,37(2):883-895.
|
[31] |
SANTOS J,FERREIRA A,FLINTSCH G. An adaptive hybrid genetic algorithm for pavement management[J]. International Journal of Pavement Engineering,2019,20(3):266-286.
|
[32] |
DING S F,LI H,SU C Y,et al. Evolutionary artificial neural networks:a review[J]. Artificial Intelligence Review,2013, 39(3):251-260.
|
[33] |
WANG J,FANG J D,ZHAO Y. Visual prediction of gas diffusion concentration based on regression analysis and BP neural network[J]. The Journal of Engineering-Joe,2019(13):19-23.
|
[1] | ZENG Senhua, ZHAO Yu, YE Tengfei, HE Ping, HAO Wenzheng. Deformation prediction of multi-step high and steep slope based on Bi-LSTM and SA fusion model[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 125-134. DOI: 10.13264/j.cnki.ysjskx.2025.01.014 |
[2] | SHENG Jianlong, QIAO Yu, WANG Ping, YU Donghua, ZHANG Yanwen. Study on risk prediction of mine karst collapse under the influence of groundwater based on LOF-SMOTE algorithm[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 372-380. DOI: 10.13264/j.cnki.ysjskx.2023.03.010 |
[3] | CHEN Lanlan, YANG Yuyun, XIAO Haiping, LUO Bing, ZOU Weihao. Prediction and analysis of open pit slope deformation based on a GA-BP neural network[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 106-112. DOI: 10.13264/j.cnki.ysjskx.2022.06.014 |
[4] | LUO Xiaoyan, HUANG Xianghai, TANG Wencong. Method of predicting sandstone fracture process based on improved VMD and GA-BP neural network[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 99-107. DOI: 10.13264/j.cnki.ysjskx.2021.01.013 |
[5] | CHEN Youliang, BIAN Huan, YU Liepei, XIE Hongwei. Online analysis and prediction of open-pit mine slope deformation based on measuring robot[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 72-80. DOI: 10.13264/j.cnki.ysjskx.2018.06.012 |
[6] | HUANG Yonggang, RAO Yunzhang, LIU Jian, ZHANG Xueyan. Study on the prediction of the filling ratio with neural network and genetic algorithm[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 76-80. DOI: 10.13264/j.cnki.ysjikx.2016.05.014 |
[7] | HUANG Yonggang, ZHANG Xueyan, LI Xuezhen, RAO Yunzhang. Contrastive application of neural network and fuzzy comprehensive evaluation to slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 94-99. DOI: 10.13264/j.cnki.ysjskx.2016.03.017 |
[8] | Gong Ting, Zheng Minggui. Demand Scenario Analysis of Copper Resources in China's copper resources based on BP Neural Network[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 99-106. DOI: 10.13264/j.cnki.ysjskx.2014.01.020 |
[9] | PENG Jian-wena, ZHAO Kuib, CAO Zong-quanc, MA Qian-tianc, LIU Ming-rong. Application of neural network and FLAC to the back analysis of tunnel displacement[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 79-82. |
[10] | HE Gui-chun, YI Hong. Application RBF Nervous Network to Prediction Model of Ore Dressing Data[J]. Nonferrous Metals Science and Engineering, 2002, 16(4): 44-46. |