Citation: | PI Jianqing, WANG Mingli, ZHANG Yanling, ZHAO Hongbo, YU Kan, LI Geng. Influence of Al2O3/TiO2/Na2O on lime dissolution in steelmaking slag[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2025.01.001 |
A red mud-based flux containing Al2O3, TiO2, and Na2O constituents exhibits a pronounced flux-enhancing effect on traditional steelmaking slag systems. Therefore, the research on the dissolution mechanism of lime in steelmaking slag and the factors influencing its dissolution rate is significant in advancing the development of fluoride-free fluxes in steelmaking. In this experiment, the dissolution rate of lime in steelmaking slag containing Al2O3, TiO2, and Na2O was measured using the cylindrical rotation method, and analysis and demonstration of mineral phase changes during its melting process was conducted. The results indicates that the promotion coefficient for lime dissolution at 1 400 ℃ decreases in the order of Na2O > TiO2 > Al2O3, and adding 10 % Na2O can increase the promotion coefficient for lime dissolution by a factor of seven. Furthermore, this paper explores the effects of Al2O3, TiO2, and Na2O on the diffusion of CaO in the slag and the lime decomposition reaction at the boundary layer, elucidating the dissolution mechanism of lime under these conditions. The concurrent presence of A12O3/TiO2/Na2O in red mud-based flux has been identified as a suitable steelmaking flux.
[1] |
张梦旭, 李建立, 李山南, 等. 活性石灰与CaO-SiO2-FetO熔渣间界面结构特性[J]. 钢铁,2023,58(3):53-60.
|
[2] |
易礼伟, 田雨丰, 刘畅 ,等. 顶底复吹转炉石灰溶解行为的数值模拟[J]. 钢铁研究学报, 2023, 35(11): 1339-1346.
|
[3] |
牟其强, 李建立, 张梦旭, 等. 高温条件下石灰活性度的变化行为研究[J]. 炼钢, 2020, 36(5): 79-84.
|
[4] |
曹彦博, 夏云进, 李杰, 等. P2O5对炼钢炉渣中石灰溶解过程的影响[J]. 过程工程学报, 2020, 20(9): 1074-1081.
|
[5] |
ZHANG Y, LI F, WANG R, et al. Application of bayer red mud-based flux in the steelmaking process. Steel Res[J]. INT, 2016, 88: 304-313.
|
[6] |
ZHANG Y, LI F, YU K. Using red mud-based Flux in steelmaking for high phosphorus hot metal[J]. ISIJ Int, 2018, 58(11): 2153-2155.
|
[7] |
LI F, ZHANG Y, GUO Z. Experimental study on hot metal desulfurization using sintered red mud-based flux [J]. JOM, 2017, 69(9): 1632-1638.
|
[8] |
邢芩瑞,马远,李宇.不同CaO源固废对钙长石全固废陶瓷矿相和性能的影响[J].有色金属科学与工程,2021,12(1):39-48.
|
[9] |
刘家辉,宁志强,谢宏伟,等.氧化镁的制备方法及发展趋势综述[J].有色金属科学与工程,2021,12(3):12-19.
|
[10] |
陈虎,陶钰禧,周朝刚,等.转炉渣热闷法直接上线工艺处理概况及应用[J].有色金属科学与工程,2021,12(6):17-25.
|
[11] |
张勇,何小娟,何运财,等.二次铝灰烧制镁铝尖晶石固相反应动力学及材料耐水蚀性能[J].有色金属科学与工程,2022,13(6): 17-24.
|
[12] |
SHIRO Y, MITSUTAKA H, RETSU N, et al. Dephosphorization and desulphurization of hot metal with CaO-Al2O3-FexOyflux[J]. Tetsu-to Hagané 2009, 75, 66-73.
|
[13] |
MUKAWA S, MIZUKAMI Y. The Rate of hot metal desulfurization by Na2O-CaO flux[J]. Tetsu-to-Hagané1996, 82: 659-664.
|
[14] |
MUKAWA S. Effect of flux composition on the rate of desulfurization of hot metal by CaO-Al2O3 flux[J].Tetsu-to-Hagané, 2004, 90(6): 408-413.
|
[15] |
SHIMODA I, SATO T, NAKASUGA T,et al. Effect of oxide additives on desulfurization efficiency of hot metal by CaO-based powders[J].Tetsuto-to-Hagané, 2004, 90: 401-407.
|
[16] |
LEE M, BARR P. The properties and production of iron-coated burnt lime[J]. Steel Res, 2002, 73: 123-128.
|
[17] |
HAMANO T, HORIBE M, ITO K. The dissolution rate of solid lime into molten slag used for hot-metal dephosphorization[J]. ISIJ INT, 2004, 44: 263-267.
|
[18] |
GUO X, SUN Z H I,VAN DYCK J,et al.In situ observation on lime dissolution in molten metallurgical slags-kinetic aspects.Industrial & Engineering Chemistry Research[J]. Chem Res, 2014, 53(15): 6325-6333.
|
[19] |
WANG Y, GUO X, XIE B. Kinetics of lime dissolution in converter dephosphorization slag[J]. Iron Steel Res, 2011, 23: 8-10.
|
[20] |
MATSUSHIMA M, YADOOMARU S, MORI K. Fundamental study on the dissolution rate of CaO into liquid slag[J]. Tetsuto-to-Hagané, 1976, 62(2): 182-190.
|
[21] |
TANG R, WANG Y, WANG S, et al. Dissolution mechanism of lime in FeOx‐SiO2‐V2O3‐TiO2 slag[J]. Characterization of Minerals, Metals, and Materials 2013, 2013: 99-108.
|
[22] |
YU K, ZHANG Y , ZHOU C. Effect of BOF slag containing Al2O3/TiO2/Na2O on corrosion rate of MgO refractory material[J]. Ironmaking & Steelmaking, 2023, 50(6):648-657.
|