Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHOU Chunxu, FENG Hongchun, ZHOU Wenzheng. Mechanical properties and cracks evolution law of sandstone containing two filled fissures[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 577-587. DOI: 10.13264/j.cnki.ysjskx.2024.04.013
Citation: ZHOU Chunxu, FENG Hongchun, ZHOU Wenzheng. Mechanical properties and cracks evolution law of sandstone containing two filled fissures[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 577-587. DOI: 10.13264/j.cnki.ysjskx.2024.04.013

Mechanical properties and cracks evolution law of sandstone containing two filled fissures

More Information
  • Received Date: August 28, 2023
  • Revised Date: September 24, 2023
  • In this paper, the mechanical experiments were conducted on red sandstone containing two filled fissures under different rock bridge parameters by triaxial compression to analyze the influence of the fissures filling types, rock bridge lengths, and rock bridge inclinations on the characteristic stresses of sandstone, as well as the cracks propagation and coalescence modes of red sandstone, revealing the influence mechanism of the filling types on the internal fracture propagation and failure modes of the two filled fissure red sandstone rocks. The results showed that the characteristic stress of the filling double fracture specimens under different filling material types gradually decreased when the length of the rock bridge was smaller, and the inclination angle of the rock bridge was larger. Additionally, under different conditions of rock bridge parameters, the weakening degree of unfilled double-fissure specimens was greater than that of mud-filled ones and much greater than that of sand-filled ones. The number of main fissures through the upper and lower ends of the filled specimen was fewer than that of the unfilled one, but with a greater number of branch fractures. The external load caused the delamination of the mud and sandstone fillings, with the maximum width of interlayer fissures reaching 50 μm. Sand crystal particles are the main reason why the mechanical properties of sandstone sand-filling specimens are stronger than those of mud-filling ones.

  • [1]
    王志,秦文静,张丽娟.含裂隙岩石注浆加固后静动态力学性能试验研究[J].岩石力学与工程学报,2020,39(12):2451-2459.
    [2]
    SUN B, LIU S, ZENG S, et al. Dynamic characteristics and fractal representations of crack propagation of rock with different fissures under multiple impact loadings[J]. Scientific Reports, 2021,11(1): 1-16.
    [3]
    MA J B, JIANG N, WANG X J, et al. Numerical study of the strength and characteristics of sandstone samples with combined double hole and double fissure defects[J]. Sustainability, 2021,13(13): 7090.
    [4]
    YANG S Q, TIAN W L, LIU X R, et al. An experimental study on failure mechanical behavior and cracking mechanism of rectangular solid sandstone containing two non-coplanar fissures under conventional triaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2021,114: 102975.
    [5]
    LUO X Y, CAO P, LIN Q B, et al. Mechanical behaviour of fracture-filled rock-like specimens under compression-shear loads: an experimental and numerical study[J]. Theoretical and Applied Fracture Mechanics, 2021, 113: 102935.
    [6]
    REN X H, YU S Y, WANG H J, et al. An improved form of SPH method and its numerical simulation study on the rock crack propagation containing fissures and holes[J]. Arabian Journal for Science and Engineering, 2021,46(11): 11303-11317.
    [7]
    LOU X M, SUN M W, YU J. Stress wave propagation in different number of fissured rock mass based on nonlinear analysis[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2021,22(7/8): 943-954.
    [8]
    WU T H, GAO Y T, ZHOU Y, et al. Experimental and numerical study on the interaction between holes and fissures in rock-like materials under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2020,106:102488.
    [9]
    YANG Z, YANG S Q, CHEN M. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment[J]. Computers and Geotechnics, 2020,120: 103414.
    [10]
    李博, 韩同城, 符力耘. 基于数字岩心的含裂隙储层砂岩介电性质研究[J]. 地球物理学报, 2020,63(12): 4578-4591.
    [11]
    BAI Y, SHAN R L, JU Y, et al. Experimental study on the strength, deformation and crack evolution behaviour of red sandstone samples containing two ice-filled fissures under triaxial compression[J]. Cold Regions Science and Technology, 2020,174: 103061.
    [12]
    CHEN W, WAN W, ZHAO Y L, et al. Experimental study of the crack predominance of rock-like material containing parallel double fissures under uniaxial compression[J]. Sustainability, 2020,12(12): 5188.
    [13]
    PAKZAD R, WANG S Y, SLOAN S W. Three-dimensional finite element simulation of fracture propagation in rock specimens with pre-existing fissure(s) under compression and their strength analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020,44(10): 1472-1494.
    [14]
    吴志军, 张锶浪, 翁磊, 等. 温度和围压影响下裂隙砂岩渗透注浆过程的实时核磁共振试验研究[J]. 岩石力学与工程学报, 2022,41(4): 660-675.
    [15]
    CARLSON G, SHIRZAEI M, OJHA C, et al. Subsidence-derived volumetric strain models for mapping extensional fissures and constraining rock mechanical properties in the San Joaquin valley, California[J]. Journal of Geophysical Research: Solid Earth, 2020,125(9): e2020JB019980.
    [16]
    XU H, QIN Y P, WANG G, et al. Discrete element study on mesomechanical behavior of crack propagation in coal samples with two prefabricated fissures under biaxial compression[J]. Powder Technology, 2020,375: 42-59.
    [17]
    刘德峰, 刘鹏涛, 张臻悦, 等. 轴压水压耦合作用下裂隙砂岩蠕变特性[J]. 工程科学与技术, 2021,53(1):94-103.
    [18]
    刘志芳, 李小双. 裂隙岩体破裂演化研究进展[J]. 有色金属科学与工程, 2020,11(4): 77-81.
    [19]
    汤双臣, 冯鹏, 赵家琛. 含交叉裂隙岩石试样单轴力学特性与破坏机理[J]. 地下空间与工程学报, 2021,17(5):1376-1383, 1407.
    [20]
    王宇, 高少华, 孟华君, 等. 不同频率增幅疲劳荷载下双裂隙花岗岩演化声发射特性与裂纹形态研究[J]. 岩石力学与工程学报, 2021,40(10): 1976-1989.
    [21]
    吴志军, 卢槐, 翁磊, 等. 基于核磁共振实时成像技术的裂隙砂岩渗流特性研究[J]. 岩石力学与工程学报, 2021,40(2): 263-275.
    [22]
    杨亮, 杨永涛, 郑宏. 相场数值流形法模拟岩石裂纹扩展[J]. 岩土力学, 2021,42(12): 3419-3427.
    [23]
    李博, 朱强, 张丰收, 等. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究[J]. 岩石力学与工程学报, 2021,40(6): 1119-1131.
    [24]
    刘享华, 张科, 李娜, 等. 含孔双裂隙3D打印类岩石试件破裂行为定量识别[J]. 岩土力学, 2021,42(11):3017-3028.
    [25]
    李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究[J]. 采矿与安全工程学报, 2021,38(5): 1025-1035.
    [26]
    刘鑫, 许宏发, 范鹏贤, 等. 围压下岩石填充裂隙对应力波衰减规律的试验研究[J]. 岩土力学, 2021,42(8):2099-2108, 2119.
    [27]
    FAIRHURST C, HUDSON J. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1999,36(3): 279-289.
    [28]
    金解放, 梁晨, 王杰, 等. 围压对红砂岩应力波频谱和频带能量特性的影响[J]. 有色金属科学与工程, 2018, 9(4):76-82.
    [29]
    邝泽良, 郑小龙, 陈军, 等. 循环荷载作用下胶结充填体声发射特征试验研究[J]. 有色金属科学与工程, 2017,8(4): 91-97.
    [30]
    PAN P Z, MIAO S T, JIANG Q, et al. The influence of infilling conditions on flaw surface relative displacement induced cracking behavior in hard rock[J]. Rock Mechanics and Rock Engineering, 2020,53(10): 4449-4470.
    [31]
    HOU P Y, CAI M. Post-peak stress-strain curves of brittle hard rocks under different loading environment system stiffness[J]. Rock Mechanics and Rock Engineering, 2022,55(7): 3837-3857.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (51) PDF downloads (9) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return