Citation: | DU Gang, LI Canhua, DENG Aijun, WANG Xiaoping, ZHANG Lanyue, LI Minghui. Experimental study of direct reduction-magnetic separation of JISCO compound dust ash[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 497-504. DOI: 10.13264/j.cnki.ysjskx.2024.04.004 |
The treatment of dust removal ash has always been a serious problem in the metallurgical field. To realize the resource utilization of dust removal ash and reduce the impact of its harmful elements on the surrounding ecological environment, six kinds of dust removal ash from JISCO were compounded and designed to verify the feasibility and efficiency of removing harmful elements from them by the pyrometallurgical process. According to the results of the direct reduction experiments, suitable experimental ingredients were determined for the kiln slag magnetic separation. The experimental results showed that the burn loss rate was 36.62% after roasting under the conditions of the mass percentage compounding of BFBD (Blast Furnace Bag Dust)∶ SSDA (Secondary Steelmaking Dust Ash)∶ SBFBA (Stored Blast Furnace Bag Ash)∶ MDA (Mixed Dust Ash)∶ BFGDA (Blast Furnace Gravity Dust Ash)∶ OG (Oxygen Gas Mud) = 28.50∶7.50∶15.50∶6.50∶28.50∶13.50, with a carbon content of 30%, roasted at 1 100 ℃ for 60 min. The rates of dezincification, depotassication and desodium were 67.86%, 75.56% and 72.41%, respectively. Furthermore, the iron grade in the roasted material was 30.77%, and the iron concentrate powder with 80.84% grade was obtained after fine grinding and magnetic separation, achieving an iron recovery rate of 81.44%. The experimental study and the associated mechanism analysis of metallic iron recovery with direct reduction and magnetic separation after compounding multiple dust removal ash are expected to provide a promising new approach for treating dust removal ash.
[1] |
国家统计局. 2022年12月份规模以上工业增加值增长1.3%[EB/OL]. (2023-01-17) [2023-5-10].http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202301/t20230117_1892124.html.
|
[2] |
曲迎霞, 高叶, 国爱, 等.利用除尘灰降低铁水碳析出的实验研究[J]. 钢铁研究学报,2023,35(3):285-292.
|
[3] |
王哲, 王京秀, 林银河, 等.有机酸选择性浸出钢铁厂转炉粉尘中的锌[J]. 有色金属科学与工程, 2021, 12(6): 1-8.
|
[4] |
王彩虹,蒋心泰.酒钢除尘灰性质分析及利用技术[J].中国冶金,2019,29(3):57-62.
|
[5] |
ASHRIT S S,CHATTI R V,SARKAR S.Identification of the carbon source in blast furnace flue dust through characterisation and statistical analysis[J].International Journal of Environmental Analytical Chemistry,2019: 1-15.
|
[6] |
赵海涛,张志雄.磁化焙烧-磁选综合回收回转窑除尘灰中铁的试验研究[J].矿冶工程,2012,32(3):64-66,70.
|
[7] |
张志荣,孙体昌,胡天洋.酒钢镜铁山铁矿石直接还原-磁选试验研究[J].矿冶工程,2014,34(5):54-57.
|
[8] |
刘琳,赵强,冯晓峰.含锌除尘灰锌铁分离研究[J].钢铁研究学报,2020,32(8):714-719.
|
[9] |
张彦,青格勒,陈润峰,等.球团配含铁尘泥的实验研究[J].烧结球团,2017,42(2):43-47.
|
[10] |
王亚雨.烧结电除尘灰内配碳球团还原实验研究[D].武汉:武汉科技大学,2017.
|
[11] |
GB/T 6730.65─2009, 铁矿石-全铁含量的测定-三氯化钛还原重铬酸钾滴定法(常规方法)[S].北京:中国标准出版社,2009.
|
[12] |
范志荣,郑勇军.还原钛铁矿中金属铁的溶样方法[J].现代冶金,2011,39(3):20-21.
|
[13] |
春铁军,吴雪健,宁超,等.菱铁矿磁化焙烧与磁选分离制备铁精矿[J].过程工程学报,2016,16(2):233-237.
|
[14] |
徐正萌,栗克建,罗宝龙,等.含锌固废高效资源化回收试验与数值模拟[J].烧结球团,2023,48(1):1-7,14.
|
[15] |
唐复平,于淑娟,钱峰,等.冶金尘泥复合球团自还原脱锌研究与实践[J].钢铁,2016,51(12):89-93,111.
|
[16] |
俞新宇,彭军,张芳,等.高炉灰与转炉灰微波协同处理提取锌、铁有价组分[J].有色金属科学与工程,2022,13(4):10-19.
|
[17] |
杨春善,任明欣.日照钢铁固废尘泥处理实践[J].钢铁,2019,54(4):83-91,98.
|
[18] |
周云花,王晓龙,甘敏,等.铁矿烧结过程氯的反应行为及脱除规律[J].烧结球团,2022,47(4):1-8.
|
[19] |
LI Y, FENG H X, WANG J S, et al. Current status of the technology for utilizing difficult-to-treat dust and sludge produced from the steel industry[J]. Journal of Cleaner Production, 2022, 367: 132909.
|
[20] |
郭秀键,罗磊,罗宝龙,等.冶金尘泥中锌铅及碱金属的危害及其脱除效果[J].有色冶金设计与研究,2023,44(1):35-38,53.
|
[21] |
魏秀泉,马腾飞,佘雪峰.含锌尘泥中锌铅及碱金属脱除研究[J].冶金能源,2019,38(1):54.
|
[22] |
王艺慈,罗果萍,柏京波,等.F、K、Na对烧结固相反应影响的研究[J].钢铁,2008,43(7):12-15.
|
[23] |
SHE X F,WANG J S,WANG G,et al.Removal mechanism of Zn, Pb and alkalis from metallurgical dusts in direct reduction process[J].Journal of Iron and Steel Research International, 2014,21(5):488-495.
|
[24] |
于恒,黄细聪,李科,等.钢铁企业除尘灰综合利用现状与展望[J].矿产保护与利用,2021,41(4):164-171.
|
[1] | DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017 |
[2] | WANG Xiaofeng, CHEN Hongjun, ZHOU Hongli, PENG Chaoqun, WANG Richu, ZENG Jing. Rheological properties of SiC suspension for direct ink writing[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 80-86. DOI: 10.13264/j.cnki.ysjskx.2024.01.010 |
[3] | YANG Jiguang, WANG Yihai, WU Zaihai, TONG Chuan, LI Guangbo, SONG Zepu, JING Xiaodong, GUO Jiaren, WANG Yuliang. Analysis on rheological characteristics and microstructure of high concentration filling the tailings from a gold mine[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 249-256. DOI: 10.13264/j.cnki.ysjskx.2023.02.012 |
[4] | LI Lyuda, HONG Xin, MAN Xucun, CHEN Qiao, ZHANG Jianbo, LIU Jinping. High temperature deformation behavior and hot processing map of Cu-Ni-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 44-51. DOI: 10.13264/j.cnki.ysjskx.2022.01.006 |
[5] | ZHOU Langya, WANG Richu, WANG Xiaofeng, CAI Zhiyong, DONG Cuige. On the hot deformation behavior and constitutive model of SiCp/2014Al composites[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 66-74. DOI: 10.13264/j.cnki.ysjskx.2021.04.009 |
[6] | LI Pengfei, DENG Chiqing, LIN Xinbo, QI Liang, YAO Youfu, XU Gaolei. Research on the hot deformation of upward continuous casting TU1[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 69-74. DOI: 10.13264/j.cnki.ysjskx.2019.03.012 |
[7] | LIU Xin, LI Qiangfeng, WANG Zhigang, ZHANG Yinghui, XIE Jianming, LIU Weining. Hot deformation behavior and constitutive equation of low alloy micro-carbon steel[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 53-59. DOI: 10.13264/j.cnki.ysjskx.2018.04.009 |
[8] | CHENG Chen, LEI Min, WAN Mingpan, CAI Gang. High temperature deformation behavior of BT25 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 51-56. DOI: 10.13264/j.cnki.ysjskx.2017.06.008 |
[9] | LUO Tao, ZHANG Liang, JIANG Liangliang, FENG Xiao. Testing on the rheological properties of the high-density slurry of the full tailings and its pipeline transportation[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 86-90. DOI: 10.13264/j.cnki.ysjskx.2015.04.018 |
[10] | ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017 |
1. |
朱宁远,陈秋明,陈世豪,左寿彬. TC11钛合金动态回复与动态再结晶高温本构模型研究. 有色金属科学与工程. 2024(01): 58-66 .
![]() | |
2. |
翟梓棫,潘炜,梁博,刘彦涛,张永忠. 热处理对选区激光熔化制备Al-Mn-Mg-Sc-Zr合金微观组织和力学性能的影响. 稀有金属. 2024(03): 325-335 .
![]() |