WEN Mengb, XIA Dingfengb, ZHONG Shengwenb. Effect of precursor pretreatment on the electrochemistry of lithium-rich manganese oxides[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 25-33. DOI: 10.13264/j.cnki.ysjskx.2024.01.004
Citation: WEN Mengb, XIA Dingfengb, ZHONG Shengwenb. Effect of precursor pretreatment on the electrochemistry of lithium-rich manganese oxides[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 25-33. DOI: 10.13264/j.cnki.ysjskx.2024.01.004

Effect of precursor pretreatment on the electrochemistry of lithium-rich manganese oxides

  • In this experiment, the cobalt-free lithium-rich manganese precursor Ni0.3Mn0.7(OH)2 was successfully synthesized by small-scale co-precipitation and solid-phase reaction, and the precursor was mechanically crushed with or without the precursor to obtain two different particle sizes of Ni0.3Mn0.7(OH)2 (D50=1.626 µm and 0.710 µm) precursors. The precursors with different particle sizes were mixed with LiOH in a molar ratio of 1:1.55 and sintered at high temperature to synthesize two Li Mn-rich cathode materials with different particle sizes, Li1.2Ni0.24Mn0.56O2 (D50=1.667 µm and 1.148 µm). The experimental results show that the particle size also affects its physicochemical properties and electrochemical performance. Li1.2Ni0.24Mn0.56O2 (D50=1.148 µm) cathode material with smaller particle size shows excellent electrochemical performance (capacity of 190.7 mAh/g after 100 cycles at 0.5 C and cycle retention rate of 91.2%). Our study reveals an easy way to change the particle size and demonstrates the importance of particle size for electrochemistry.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return