Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
XU Jindong, YU Chao, CHEN Xiaofeng, WU Caibin, ZHANG Zhongxiang. Influence of different grinding media on grinding effect of fine-grained magnetite[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 561-568. DOI: 10.13264/j.cnki.ysjskx.2023.04.015
Citation: XU Jindong, YU Chao, CHEN Xiaofeng, WU Caibin, ZHANG Zhongxiang. Influence of different grinding media on grinding effect of fine-grained magnetite[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 561-568. DOI: 10.13264/j.cnki.ysjskx.2023.04.015

Influence of different grinding media on grinding effect of fine-grained magnetite

More Information
  • Received Date: May 31, 2022
  • Revised Date: August 09, 2022
  • Available Online: August 23, 2023
  • The use of steel balls in the process of ore milling can cause some serious problems, such as high energy consumption and over-grinding. In this paper, fine-grained magnetite was used as the research object. The effects of ceramic and steel balls on mineral grinding performance were investigated by pure mineral grinding experiments. The response surface method was used to analyze the influence order of grinding operation factors and their interaction on grinding fineness (γ< 0.074 mm). The results showed that the grinding effect of ceramic balls was significantly better than that of steel balls when the particle size of the in-ground magnetite was less than 0.15 mm. Under the optimal grinding comparison conditions, the grinding effect of ceramic balls was better than that of steel balls. The specific energy consumption in the grinding process was reduced by 35.82%, the noise was reduced by 21.85%, and the technical efficiency was increased by 26.12%. In grinding products, γ< 0.074 mm increased by 5.96%, while γ< 0.023 mm decreased by 32.49%. The results of the response surface method showed that the influence order of magnetite grinding fineness γ< 0.074 mm was as follows: medium size > filling rate > grinding concentration. The interaction between the medium size and filling rate has a highly significant effect on the grinding fineness of magnetite, while the interaction between the filling rate and grinding concentration is not significant. The results can be valuable for the fine grinding of ceramic balls in black metal ore.
  • [1]
    王维萃. 砾石磨矿的工业试验及经济效果[J]. 金属矿山, 1983(7): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS198307007.htm
    [2]
    许鸿国, 曾军龙, 李杨, 等. 顽石处理对半自磨机产能的影响[J]. 中国钼业, 2021, 45(3): 31-34. doi: 10.13384/j.cnki.cmi.1006-2602.2021.03.008
    [3]
    肖庆飞, 王国强, 杨芳, 等. 半自磨顽石做中矿再磨介质的应用研究[J]. 矿产保护与利用, 2017(3): 32-36. doi: 10.13779/j.cnki.issn1001-0076.2017.03.006
    [4]
    姬民锋. 初论球在磨矿机中的径向分布规律[J]. 金属矿山, 1982(4): 26-29, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS198204007.htm
    [5]
    张彩霞, 刘维平. 球磨过程中钢球运动规律的研究[J]. 南方冶金学院学报, 2000(2): 99-103. doi: 10.3969/j.issn.2095-3046.2000.02.006
    [6]
    KOHLS E, ZMICH R, HEINZEL C, et al. Residual stress change in multistage grinding[J]. Procedia CIRP, 2020, 87: 186-191. doi: 10.1016/j.procir.2020.02.068
    [7]
    杨常庆. 球磨机钢球最佳脱落角计算[J]. 华北电力技术, 1983(1): 40-44. doi: 10.16308/j.cnki.issn1003-9171.1985.11.002
    [8]
    杨常庆. 球磨机钢球最佳脱落角计算(续)[J]. 华北电力技术, 1985(11): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDJ198511001.htm
    [9]
    谢恒星, 李松仁. 球磨机中钢球磨损规律数学模型的研究[J]. 金属矿山, 1988(4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS198804012.htm
    [10]
    傅景海, 张治元, 林润江, 等. 钢球磨耗过程的计算机研究方法[J]. 化工矿山技术, 1990(6): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ199006008.htm
    [11]
    谢恒星, 李松仁, 张一清, 等. 磨矿条件对钢球磨损的影响[J]. 武汉化工学院学报, 2000(1): 34-36, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG200001010.htm
    [12]
    王明星, 李艳军, 刘金长, 等. 黑沟铁矿石粉矿(-15mm)棒磨磨矿工艺试验[J]. 金属矿山, 2016(12): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201612021.htm
    [13]
    段希祥. 球磨机的钢球尺寸研讨[J]. 有色金属(选矿部分), 1983(5): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK198305009.htm
    [14]
    李国保, 唐新民. 球磨机钢球大小的试验研究[J]. 矿山机械, 2005(4): 12-14, 4. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX200504004.htm
    [15]
    高威海, 相炜鹏. 百花岭选矿厂钢球小型化分析探讨及试验研究[J]. 中国钼业, 2005(2): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200502007.htm
    [16]
    肖庆飞, 董放战, 罗春梅, 等. 郑州氧化铝二厂细磨球磨机介质优化研究[J]. 金属矿山, 2010, 403(1): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201001035.htm
    [17]
    常富强, 牛南南, 梁献振. 洛钼选厂二段球磨机钢球配比优化研究[J]. 现代矿业, 2022, 38(3): 125-128, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202203031.htm
    [18]
    王明飞, 杨芳. 某铅锌矿钢球配比优化研究[J]. 云南冶金, 2021, 50(6): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202106008.htm
    [19]
    吴志强, 方鑫, 童佳琪, 等. 纳米陶瓷球作细磨介质下的磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2019, 10(5): 91-96. doi: 10.13264/j.cnki.ysjskx.2019.05.014
    [20]
    廖宁宁, 吴彩斌, 吴志强, 等. 纳米陶瓷球对铜硫矿磨矿和浮选的影响[J]. 有色金属工程, 2019, 9(1): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201901012.htm
    [21]
    宁江峰, 李茂林, 崔瑞, 等. 磨矿方式对方解石颗粒形貌及浮选行为的影响[J]. 矿产保护与利用, 2020, 40(2): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202002008.htm
    [22]
    FANG X, WU C B, LIAO N N, et al. The first attempt of applying ceramic balls in industrial tumbling mill: a case study[J]. Minerals Engineering, 2022, 180: 107504.
    [23]
    JÉGOUREL Y. The global iron ore market: from cyclical developments to potential structural changes[J]. The Extractive Industries and Society, 2020, 7(3): 1128-1134.
    [24]
    JIANG H D, HAO W T, XU Q Y, et al. Socio-economic and environmental impacts of the iron ore resource tax reform in China: A CGE-based analysis[J]. Resources Policy, 2020, 68: 101775.
    [25]
    LITTLE L, MAINZA A N, BECKER M, et al. Fine grinding: how mill type affects particle shape characteristics and mineral liberation[J]. Minerals Engineering, 2017, 111: 148-157.
    [26]
    叶景胜, 廖宁宁, 吴志强, 等. 钢锻作细磨介质下的磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2018, 9(6): 65-71. doi: 10.13264/j.cnki.ysjskx.2019.03.015
    [27]
    邓小龙, 李茂林, 崔瑞, 等. 基于总体平衡模型的给料粒度分布对球磨机磨矿速率的影响研究[J]. 矿业研究与开发, 2018, 38(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201802020.htm
    [28]
    中国颗粒学会. 颗粒学学科发展报告: 2009—2010[M]. 北京: 中国科学技术出版社, 2010.
    [29]
    EBADNEJAD A. Investigating of the effect of ore work index and particle size on the grinding modeling of some copper sulphide ores[J]. Journal of Materials Research and Technology, 2016, 5(2): 101-110.
    [30]
    EBADNEJAD A, KARIMI G R, DEHGHANI H. Application of response surface methodology for modeling of ball mills in copper sulphide ore grinding[J]. Powder Technology, 2013, 245: 292-296.
    [31]
    刘吉顺, 杨丽荣. 湿式球磨机磨矿效率影响因素正交试验与分析[J]. 矿业研究与开发, 2020, 40(5): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202005031.htm
    [32]
    廖亚龙, 周娟, 黄斐荣, 等. 响应曲面法优化复杂硫化铜矿选择性浸出工艺[J]. 中国有色金属学报, 2016, 26(1): 164-172. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201601019.htm
  • Related Articles

    [1]LI Yongming, QIAO Dengpan, YANG Tianyu, WANG Jun, SHI Renzhi, ZHANG Xi, LIAN Baidong, ZHENG Cong. Study on multiple factor interaction and parameter optimization of flocculation sedimentation of unclassified tailings slurry based on response surface method[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 901-910. DOI: 10.13264/j.cnki.ysjskx.2024.06.013
    [2]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [3]HOU Yifei, SUN Jian, BAI Ni, SUN Yongfen, JU Dianchun. Recovery of ZrO2 from zirconium-containing waste salt based on response surface methodology[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 26-34. DOI: 10.13264/j.cnki.ysjskx.2021.06.004
    [4]WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014
    [5]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [6]CHEN Guoliang, HUANG Yonggang, SHAO Yajian, LI Xuezhen, RAO Yunzhang. Based on the response surface optimization method of a certain mine filling ratio optimization[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 73-76. DOI: 10.13264/j.cnki.ysjskx.2016.02.013
    [7]ZHU Quan, ZHANG Xiu-Zhi. The social responsibility driving force of rare-earth industry[J]. Nonferrous Metals Science and Engineering, 2012, 3(4): 82-86, 90. DOI: 10.13264/j.cnki.ysjskx.2012.04.005
    [8]XU Bing-liang, SUN Li-jun, LIU Dian-wen. The Optimization of the Flotation Process of Ilmenite by the Harmonic-mean Model of Multi-response Optimization Method[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 28-33,85.
    [9]WANG Jian-ru, LIU Zu-wen, ZHU Qiang, XU Jian-hong. On the Factors Affecting the Phosephorus and Nitrogen Removal by Carrousel Oxidation Ditch Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 51-54.
    [10]XIONG Zhen-xiu, ZHU Sai-hua. Measures of Energy Saving and Environmental Protection of Water Treatment in Bar Steel Plont[J]. Nonferrous Metals Science and Engineering, 2006, 20(4): 49-50.

Catalog

    Article Metrics

    Article views (155) PDF downloads (20) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return