Citation: | FU Zhikai, GUO Yao, REN Sili. Effect and mechanism of dispersant-enhanced flotation separation of smithsonite and fine chlorite mixtures[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 553-560. DOI: 10.13264/j.cnki.ysjskx.2023.04.014 |
[1] |
WANG X P, MA Y, MENG B, et al. Effect of equal-channel angular pressing on microstructural evolution, mechanical property and biodegradability of an ultrafine-grained zinc alloy[J]. Materials Science and Engineering: A, 2021, 824(8): 141857.
|
[2] |
罗仙平, 杨思琦, 何坤忠, 等. "十三五"期间我国铅锌硫化矿选矿技术进展[J]. 有色金属科学与工程, 2022, 13(3): 117-129. doi: 10.13264/j.cnki.ysjskx.2022.03.015
|
[3] |
FENG Q C, WEN S M, BAI X, et al. Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation[J]. Minerals Engineering, 2019, 137: 1-9. doi: 10.1016/j.mineng.2019.03.021
|
[4] |
MÜTEVELLIOĞLU N A, YEKELER M. Beneficiation of oxidized lead-zinc ores by flotation using different chemicals and test conditions[J]. Journal of Mining Science, 2019, 55(2): 327-332. doi: 10.1134/S1062739119025623
|
[5] |
KHALEGHI B, NOAPARAST M, SHAFAEI S Z, et al. Flotation study of oxide zinc ore using cationic-anionic mixed collectors[J]. Russian Journal of Non-Ferrous Metals, 2017, 57(7): 647-658.
|
[6] |
艾光华, 蔡鑫, 毕康颖, 等. 金属离子对矿物浮选行为影响的研究进展[J]. 有色金属科学与工程, 2017, 8(6): 70-74. doi: 10.13264/j.cnki.ysjskx.2017.06.011
|
[7] |
CHEN L Z, WANG C B, ZHENG Y X, et al. Flotation of a low-grade zinc oxide ore after surface modification at high temperature[J]. JOM, 2019, 71(9): 3166-3172. doi: 10.1007/s11837-019-03608-3
|
[8] |
孙洪丽. 思茅山河氧化锌矿选矿新技术研究[D]. 昆明: 昆明理工大学, 2007.
|
[9] |
蒲雪丽. 云南某低品位氧化锌矿浮选试验研究[D]. 昆明: 昆明理工大学, 2008.
|
[10] |
KURSUNOGLU S, KURSUNOGLU N, HUSSAINI S, et al. Selection of an appropriate acid type for the recovery of zinc from a flotation tailing by the analytic hierarchy process[J]. Journal of Cleaner Production, 2020, 283: 124659.
|
[11] |
SHANG Y B, TAN X. Study of new process technology for low-grade refractory zinc oxide ore[J]. Procedia Environmental Sciences, 2016, 31: 195-203. doi: 10.1016/j.proenv.2016.02.026
|
[12] |
FA K, MILLER J D, JIANG Ü T, et al. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(5): 1138-1144.
|
[13] |
LUO B, LIU Q J, DENG J S, et al. Characterization of sulfide film on smithsonite surface during sulfidation processing and its response to flotation performance[J]. Powder Technology, 2019, 351: 144-152. doi: 10.1016/j.powtec.2019.04.023
|
[14] |
WU D D, MA W H, WEN S M, et al. Contribution of ammonium ions to sulfidation-flotation of smithsonite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 20-26. doi: 10.1016/j.jtice.2017.05.015
|
[15] |
FENG Q C, WEN S M. Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance[J]. Journal of Alloys and Compounds, 2017, 709: 602-608. doi: 10.1016/j.jallcom.2017.03.195
|
[16] |
BAI S J, LI C L, FU X Y, et al. Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance[J]. Minerals Engineering, 2018, 125: 190-199. doi: 10.1016/j.mineng.2018.03.040
|
[17] |
张国范, 崔萌萌, 冯其明. Zn2+存在体系中菱锌矿与石英浮选分离的研究[J]. 化工矿物与加工, 2012, 41(5): 11-15, 19. doi: 10.3969/j.issn.1008-7524.2012.05.004
|
[18] |
IRANNAJAD M, EJTEMAEI M, GHARABAGHI M. The effect of reagents on selective flotation of smithsonite-calcite-quartz[J]. Minerals Engineering, 2009, 22(9/10): 766-771.
|
[19] |
徐东方, 朱书全, 朱志波, 等. 硅酸钠对煤和高岭石浮选行为的影响[J]. 煤炭科学技术, 2016, 44(7): 201-205. doi: 10.13199/j.cnki.cst.2016.07.035
|
[20] |
CHEN Y F, ZHANG G F, WANG M T, et al. Utilization of sodium carbonate to eliminate the adverse effect of Ca2+ on smithsonite sulphidisation flotation[J]. Minerals Engineering, 2019, 132: 121-125. doi: 10.1016/j.mineng.2018.12.003
|
[21] |
EJTEMAEI M, IRANNAJAD M, GHARABAGHI M. Role of dissolved mineral species in selective flotation of smithsonite from quartz using oleate as collector[J]. International Journal of Mineral Processing, 2012(114/115/116/117): 40-47.
|
[22] |
FENG B, FENG Q M, LU Y P, et al. The effect of PAX/CMC addition order on chlorite/pyrite separation[J]. Minerals Engineering, 2013, 42: 9-12. doi: 10.1016/j.mineng.2012.10.011
|
[23] |
杨俊龙. 兰坪低品位高氧化率氧化铅锌矿的综合回收利用[D]. 昆明: 昆明理工大学, 2013.
|
[24] |
黄万抚, 王金敏, 文金磊, 等. 快速浮选提高锌渣中银回收率的试验研究[J]. 有色金属科学与工程, 2015, 6(5): 85-90. doi: 10.13264/j.cnki.ysjskx.2015.05.016
|
[25] |
靳晨曦, 马子龙, 曹亦俊, 等. 极低品位泥质难选氧化锌矿浮选试验研究[J]. 矿产综合利用, 2022, 38(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201701016.htm
|
[26] |
王宏菊, 刘全军, 皇甫明柱, 等. 难选氧化锌矿浮选过程中脱泥作业的生产实践[J]. 有色金属(选矿部分), 2009(5): 11-13. doi: 10.3969/j.issn.1671-9492.2009.05.004
|
[27] |
陈晔, 陈建华, 李玉琼. 异极矿氧化锌矿石浮选试验研究[J]. 矿业研究与开发, 2008, 134(4): 38-40, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK200804016.htm
|
[28] |
崔瑞, 邓小龙. 某新型脂肪羧酸类捕收剂的浮选性能试验研究[J]. 矿产保护与利用, 2018(6): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201806010.htm
|
[29] |
韩聪, 魏德洲, 刘文刚, 等. 十二胺体系中菱锌矿的浮选行为[J]. 金属矿山, 2011, 40(11): 99-102, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201111024.htm
|
[30] |
GUO Y, YANG B, FU Z K, et al. Enhancing the floatability of smithsonite mixed with silicate minerals by using a novel dispersant of cetylpyridinium bromide[J]. Minerals Engineering, 2022, 185: 107711.
|
[31] |
胡岳华, 陈湘清, 王毓华. 磷酸盐对一水硬铝石和高岭石浮选的选择性作用[J]. 中国有色金属学报, 2003, 13(1): 222-228. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200301040.htm
|
[32] |
王世华. 无机化学教程[M]. 北京: 科学出版社, 2000.
|
[33] |
周清波. 菱锌矿与方解石浮选分离的研究[D]. 长沙: 中南大学, 2010.
|
[34] |
冯博, 卢毅屏, 冯其明. 绿泥石/蛇纹石聚集分散及抑制行为研究[J]. 稀有金属, 2016, 40(2): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201602012.htm
|
[35] |
王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988.
|