Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Fuyu, RAO Yunzhang, SHI Liang, ZHANG Meidao, TAN Shujun, ZHANG Shijia. Analysis on stability of ionic rare earth slope under heavy rainfall[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 148-154. DOI: 10.13264/j.cnki.ysjskx.2022.05.018
Citation: WU Fuyu, RAO Yunzhang, SHI Liang, ZHANG Meidao, TAN Shujun, ZHANG Shijia. Analysis on stability of ionic rare earth slope under heavy rainfall[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 148-154. DOI: 10.13264/j.cnki.ysjskx.2022.05.018

Analysis on stability of ionic rare earth slope under heavy rainfall

More Information
  • Received Date: January 15, 2022
  • Revised Date: March 24, 2022
  • Available Online: November 07, 2022
  • Rainfall is one of the main factors inducing the landslide disasters in ionic rare earth mines. In this paper, with the slope of an ionic rare earth mine in southern Jiangxi as the research object, the changes in pore water pressure of the slope under heavy rainfall were obtained by a numerical simulation method. The influence of rainfall typ, the interval time between rain stops and rainfall intensity on the slope pore water pressure were analyzed respectively, and the coefficient of the slope stability was calculated by applying finite element strength subtraction under the proposed working conditions. The results show that pore water pressures of the slope vary under different rainfall types, and the enhanced rainfall has the greatest influence on the slope stability coefficient. The drop amplitude of the pore water pressure on the slope surface increases with the increase of rain stop interval. When the total rainfall is the same, the shortened rain stop interval is detrimental to slope stability. With the increase of rainfall intensity, the change rate of slope pore water pressure increases, the decline rate of slope stability coefficient increases, and the decline range increases.
  • [1]
    郭钟群, 赵奎, 金解放, 等. 离子型稀土开发面临的问题与绿色提取研究进展[J]. 化工进展, 2019, 38(7): 3425-3433. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201907045.htm
    [2]
    罗嗣海, 袁磊, 王观石, 等. 浸矿对离子型稀土矿强度影响的试验研究[J]. 有色金属科学与工程, 2013, 4(3): 58-61. doi: 10.13264/j.cnki.ysjskx.2013.03.006
    [3]
    王晓军, 李永欣, 黄广黎, 等. 浸矿过程离子型稀土矿孔隙结构演化规律研究[J]. 中国稀土学报, 2017(4): 528-536. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201704013.htm
    [4]
    吴丹瑞, 吴安琪, 何新玥, 等. 赣南地区近58年来极端气候变化趋势分析[J]. 长江科学院院报, 2017, 34(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201701007.htm
    [5]
    邓文建, 饶运章, 王丹, 等. 降雨入渗对离子型稀土边坡的稳定性影响研究[J]. 矿业研究与开发, 2019, 39(11): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201911002.htm
    [6]
    TANG D, JIANG Z M, YUAN T, et al. Stability analysis of soil slope subjected to perched water condition[J]. KSCE Journal of Civil Engineering, 2020, 24(9): 2581-2590.
    [7]
    王力, 李高, 陈勇, 等. 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学, 2021, 42(3): 846-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103027.htm
    [8]
    邱祥, 蒋煌斌, 欧健, 等. 降雨条件下边坡暂态饱和区形成条件与演化特征数值分析[J]. 水利学报, 2020, 51(12): 1525-1535. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202012010.htm
    [9]
    钟文, 欧阳健, 黄震, 等. 不同降雨条件下稀土尾矿堆入渗与破坏规律试验研究[J]. 中南大学学报(自然科学版), 2021, 52(11): 4099-4109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202111028.htm
    [10]
    ZHANG Y, LU H F. Unsaturated seepage and stability of double-layer slope under rainfall infiltration[J]. E3S Web of Conferences, 2021, 248(7) : 03024.
    [11]
    张蔚榛. 地下水与土壤水动力学[M]. 北京: 中国水利水电出版社, 1996: 1-5.
    [12]
    戚蓝, 王守甲, 傅长锋. 短历时强降雨下边坡滑移特征时空分布规律的研究[J]. 水资源与水工程学报, 2018, 29(6): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201806029.htm
    [13]
    VAN GENUCHTEN M T. A closed form equation for prediction the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [14]
    万思豪, 张继勋, 张景风. 不同降雨条件下裂隙性土质边坡渗流特性分析[J]. 三峡大学学报(自然科学版), 2019, 41(1): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201901009.htm
    [15]
    彭珂, 彭红霞, 梁峰, 等. 赣州市地质灾害分布特征及孕灾环境分析[J]. 安全与环境工程, 2017, 24(1): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201701006.htm
    [16]
    赵奎, 赵康, 徐贻赣, 等. 赣州境内地质灾害实例分析[J]. 采矿技术, 2005, 5(2): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK200502019.htm
    [17]
    荣冠, 张伟, 周创兵. 降雨入渗条件下边坡岩体饱和非饱和渗流计算[J]. 岩土力学, 2005(10): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200510004.htm
    [18]
    LI S H, JIANG Z L, QUE Y, et al. Water field distribution characteristics under slope runoff and seepage coupled effect based on the finite element method[J]. Water, 2021, 13(24): 3569-3569.
    [19]
    年庚乾, 陈忠辉, 张凌凡, 等. 边坡降雨入渗问题中两种边界条件的处理及应用[J]. 岩土力学, 2020, 41(12): 4105-4115. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012031.htm
    [20]
    邬长福, 姚贵佳, 陈亮, 等. 基于Geo-Studio的离子型稀土矿边坡稳定性分析[J]. 中国地质灾害与防治学报, 2016, 27(2): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201602011.htm
    [21]
    何书, 陈飞, 刘强, 等. 稀土矿层厚度对浸矿边坡渗流及稳定性的影响[J]. 防灾减灾工程学报, 2018, 38(3): 528-534. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803017.htm
    [22]
    张昊, 余巍伟, 林杭, 等. 不同安全系数对应的边坡滑动面位置分析[J]. 岩土力学, 2012, 33(2): 449-452. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201202023.htm
    [23]
    高冯, 李小军, 迟明杰. 基于有限元强度折减法的单双面边坡稳定性分析[J]. 工程地质学报, 2020, 28(3): 650-657. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003022.htm
    [24]
    栾茂田, 武亚军, 年廷凯. 强度折减有限元法中边坡失稳的塑性区判据及其应用[J]. 防灾减灾工程学报, 2003, 23(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200303001.htm

Catalog

    Article Metrics

    Article views (112) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return