Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Jingfeng, LAI Chunhua, SUN Kang, SONG Xuewen, KONG Huimin, WANG Maosheng, LONG Yinglan. Measurement of acid-soluble silicon content in high-purity magnesium oxide products based on inductance-coupled plasma technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 135-140. DOI: 10.13264/j.cnki.ysjskx.2022.04.016
Citation: WANG Jingfeng, LAI Chunhua, SUN Kang, SONG Xuewen, KONG Huimin, WANG Maosheng, LONG Yinglan. Measurement of acid-soluble silicon content in high-purity magnesium oxide products based on inductance-coupled plasma technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 135-140. DOI: 10.13264/j.cnki.ysjskx.2022.04.016

Measurement of acid-soluble silicon content in high-purity magnesium oxide products based on inductance-coupled plasma technology

More Information
  • Received Date: May 05, 2021
  • Revised Date: September 15, 2021
  • Available Online: September 02, 2022
  • High pure magnesium oxide product purity reaches 99.9%. The silicon impurity content is one of the important indicators to evaluate its grade, and it is particularly important to determine it accurately. Routine standard curve methods cannot overcome the matrix effect of magnesium so that domestic counterparts routinely use matrix matching method to overcome such effect, but it is difficult to find magnesium containing miscellaneous elements and higher purity similar to high purity magnesium oxide products. The standard accession method is used as a technical means since its advantage is that it is very suitable for analyzing (super) trace elements in high magnesium matrix concentrations with high accuracy. This study dissolved the samples of hydrochloric acid. Taking the standard addition method as the technical method, inductively coupled plasma emission spectroscopy was used to establish a simple, fast, and accurate assay. The proposed method had a good linear relationship at the analytical spectral line of 251.611 nm, the detection limit of the method was 0.018 3 μg/mL, and the lower limit of determination was 0.061 0 μg/mL. In the actual high-purity magnesium oxide product test, the calibration recovery rate was between 97.86%-103.80%, which was suitable for determining acid-soluble silicon in high-purity magnesium oxide products and provided technical support for the determination of acid-soluble silicon content in magnesium oxide products of salt lake chemical enterprises.
  • [1]
    李坦平, 谢华林, 袁龙华, 等. 电感耦合等离子体串联质谱法测定高纯氧化镁粉中金属杂质元素[J]. 冶金分析, 2018, 38(10): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201810003.htm
    [2]
    王景凤, 黎永娟, 胡燕秀, 等. 高纯镁基氧化物中11种元素在电感耦合等离子体焰中的光谱干扰探讨[J]. 盐科学与化工, 2020, 49(2): 24-28. doi: 10.3969/j.issn.2096-3408.2020.02.009
    [3]
    黎永娟, 王景凤, 胡燕秀, 等. 基于电感耦合等离子体高纯镁基氧化物中共存元素光谱特征[J]. 化学分析计量, 2019, 28(6): 20-26. doi: 10.3969/j.issn.1008-6145.2019.06.005
    [4]
    王景凤, 宋学文, 曹雨微. 电感耦合等离子体原子发射光谱法测定氧化镁和氢氧化镁中10种痕量元素[J]. 理化检验(化学分册), 2021, 57(6): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202106008.htm
    [5]
    王铁, 亢德华, 于媛君, 等. 电感耦合等离子体原子发射光谱法测定稀土镁铸铁中常量及痕量元素[J]. 冶金分析, 2012, 32(5): 66-69. doi: 10.3969/j.issn.1000-7571.2012.05.013
    [6]
    吴敏, 王景凤, 王茂盛, 等. 利用电感耦合等离子体发射光谱测定镍矿石中铂钯含量的方法: ZL 2018 1 0919864.4[P]. 2021-02-05.
    [7]
    刘巍, 吕婷, 陶美娟. 微波消解-电感耦合等离子体原子发射光谱法测定石墨烯材料中11种微量元素[J]. 理化检验(化学分册), 2019, 55(10): 1225-1227. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201910023.htm
    [8]
    桂素萍, 毛红祥, 孙丽丽, 等. 萃取分离-电感耦合等离子体原子发射光谱法测定磷肥中铊[J]. 理化检验(化学分册), 2019, 55(5): 574-576. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201905018.htm
    [9]
    易田芳, 彭礼枚, 向勇. 水浴加热振荡提取-电感耦合等离子体原子发射光谱法测定土壤中有效硼[J]. 理化检验(化学分册), 2019, 55(8): 972-975. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201908025.htm
    [10]
    刘卫, 郭颖超, 谷周雷, 等. 地球化学样品中硫、铁、铋、铅、锑、砷、汞等元素的组合高效测定方法[J]. 有色金属科学与工程, 2021, 12(3): 113-121. doi: 10.13264/j.cnki.ysjskx.2021.03.015
    [11]
    梅连平. 混合溶液提取-电感耦合等离子体原子发射光谱法同时测定碱性土壤中速效钾和有效磷、铁、锰、铜、锌的含量[J]. 理化检验(化学分册), 2019, 55(9): 1112-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201909028.htm
    [12]
    魏丽娜, 李明晓, 王芳, 等. 电感耦合等离子体原子发射光谱法测定铜矿中砷的含量[J]. 理化检验(化学分册), 2020, 56(1): 100-102. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202001022.htm
    [13]
    王丹, 思东, 刘杰, 等. 电感耦合等离子体发射光谱法测定东北大豆中微量元素[J]. 光谱学与光谱分析, 2002, 22(4): 673-675. doi: 10.3321/j.issn:1000-0593.2002.04.042
    [14]
    刘磊, 杨艳. 电感耦合等离子体-原子发射光谱法测定中药中微量元素[J]. 光谱实验室, 2010, 27(5): 1964-1967. doi: 10.3969/j.issn.1004-8138.2010.05.068
    [15]
    COEDO A G, DORADO M T, PADILLA I. Evaluation of a desolvating microconcentric nebulizer in inductively coupled plasma mass spectrometry to improve the determination of arsenic in steels[J]. Appl Spectrosc, 1999, 53(8): 974-978. doi: 10.1366/0003702991947630
    [16]
    周西林, 王娇娜, 刘迪, 等. 电感耦合等离子体原子发射光谱法在金属材料分析应用技术方面的进展[J]. 冶金分析, 2017, 37(1): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201701007.htm
    [17]
    EVDOKIMOVAO, ZAITCEVAP, PECHISH-CHEVAN, etal. The rhenium determination in copper and molybdenum ores and concentrates by ICP atomic emission spectrometry[J]. Current Neurophar-macology, 2014, 10(4): 449-456.
    [18]
    KARADJOVM, VELITCHKOVAN, VELEVAO, et al. Spectral interferences in the determiination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry(ICP-OES)[J]. Spectrochimica Acta Part B: A-tomic Spectroscopy, 2016, 119: 76-82. doi: 10.1016/j.sab.2016.03.011
    [19]
    王景凤, 隆英兰, 韩俊丽. 电感耦合等离子体原子发射光谱法在测定水氯镁石中10镉、铬、铅、砷的应用研究[J]. 盐科学与化工, 2020, 49(9): 24-27. doi: 10.3969/j.issn.2096-3408.2020.09.007
    [20]
    龙海珍, 王景凤, 王茂盛, 等. 火试金富集-重量法测定锌阳极泥中银含量的方法[J]. 有色金属科学与工程, 2019, 10(6): 76-80. doi: 10.13264/j.cnki.ysjskx.2019.06.012
    [21]
    刘宪彬, 贾慧荣, 褚振全. 电感耦合等离子体原子发射光谱法测定锰铁合金、锰硅合金和金属锰中8种微量元素[J]. 冶金分析, 2019, 39(5): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201905008.htm
  • Related Articles

    [1]ZHENG Ya, LIU Juan, YU Qiang, MU Yichen, ZHAO Xiaoyu, LI Xiaocheng. Preparation of micro-nano hierarchical Si/C composites by CO2 oxidation of porous Mg2Si and lithium storage properties[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 256-264. DOI: 10.13264/j.cnki.ysjskx.2024.02.012
    [2]LI Liqing, ZHOU Run, LONG Huiting, KONG Huimin, ZOU Laixi, LUO Xianping, SHAO Yunan, YANG Guofei. Surface modification mechanism of magnesium hydroxide (101) based on density functional theory[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 447-453. DOI: 10.13264/j.cnki.ysjskx.2023.04.001
    [3]LIU Xiaoxian, ZHENG Ya, LIU Juan, YU Qiang, LI Xiaocheng, HAN Feng, WANG Jianqiu. Partial carbonization strategy to prepare Si@C composite and its lithium storage performance[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 50-57. DOI: 10.13264/j.cnki.ysjskx.2022.06.007
    [4]WEN Shijie, CHEN Feiyu. Determination of 14 rare earth lmpurities in Lanthanum-iron alloy by inductively coupled plasma optical emission spectrometry[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 123-130. DOI: 10.13264/j.cnki.ysjskx.2021.06.016
    [5]ZHANG Hepeng, SUN Sicong, MEI Longbao, LIANG Liang. Preparation of super-high purity niobium oxide by adjusting valence state extraction and ceramic membrane filtration combined with antimony removal[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 71-75. DOI: 10.13264/j.cnki.ysjskx.2020.02.010
    [6]HE Jiangfan, WU Peijia, GUANG Weixin, LI Xin, SHU Qing. Synthesis and selectivity of anode material La0.75Sr0.25Cr0.5Mn0.5O3-δ for solid oxide fuel cell[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 33-36, 48. DOI: 10.13264/j.cnki.ysjskx.2018.05.006
    [7]ZHANG Wenjuan, XIE Lingjun, LIU Hong. Determination of low content total rare earth in bastnaesite by ICP-AES[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 141-146. DOI: 10.13264/j.cnki.ysjskx.2016.06.0024
    [8]WEN Shijie, ZHOU Junhai, ZHANG Shaofu. Determination of Al, Si, Ca, Mg, Mn in yttrium-iron alloy by inductively Coupled plasma atomic emission spectrometry[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 134-136. DOI: 10.13264/j.cnki.ysjskx.2016.01.024
    [9]XU Fang. Determination of Mn in Aluminum Bronze by ICP-AES[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 80-82.
    [10]CAI Xu. On the Application of Slon High-gradient Magnetic Separator in Cobalt Oxide Mine[J]. Nonferrous Metals Science and Engineering, 2009, 23(2): 16-17,22.
  • Cited by

    Periodical cited type(1)

    1. 陈军,张文娟,马保中,王成彦,陈永强. 机械活化在固相反应中的研究进展. 有色金属科学与工程. 2021(01): 13-21 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (130) PDF downloads (9) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return