Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
XIA Liu, ZHANG Wenjuan, MA Baozhong, WAWANG Chengyan. Electrodeposition behavior rules of cadmium in lead smelting dust leachate[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 1-8. DOI: 10.13264/j.cnki.ysjskx.2022.03.001
Citation: XIA Liu, ZHANG Wenjuan, MA Baozhong, WAWANG Chengyan. Electrodeposition behavior rules of cadmium in lead smelting dust leachate[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 1-8. DOI: 10.13264/j.cnki.ysjskx.2022.03.001

Electrodeposition behavior rules of cadmium in lead smelting dust leachate

More Information
  • Received Date: August 09, 2021
  • Revised Date: October 07, 2021
  • Available Online: July 15, 2022
  • Cadmium is commonly associated with zinc, lead-zinc and copper-lead-zinc ores. Thus, approximately 95% of cadmium is recycled as a byproduct in the lead and zinc smelting process, among which smelting dust is one of the main raw materials for cadmium recovery. In this paper, the electrolytic deposition behavior of cadmium in a sulfuric acid leach solution of lead smelting soot was investigated, mainly the influence laws of current density, temperature and the concentration of Cd2+ on the current efficiency, specific power consumption, purity and morphology of cathode cadmium. The results show that the current efficiency of electrodeposition for 4 h can reach 96.14% with a specific power consumption of 1.769 kW·h/kg and a cadmium purity of 97.75% at a current density of 150 A/m2, a temperature of 30 ℃ and a cadmium concentration in the immersion liquid of 40 g/L. The increase in temperature and current density and the consumption of Cd2+ reduce the current efficiency and increase the unit power consumption, respectively. Furthermore, the electrode reaction kinetics show that the reduction process of cadmium ions in the cathode region is controlled by ion diffusion.
  • [1]
    王晓慧, 梁友伟, 惠博, 等. 贵州丹寨铅锌多金属硫化矿资源的高效回收试验[J]. 金属矿山, 2021(2): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202102014.htm
    [2]
    余德彪, 王建平, 徐乐, 等. 中国镉资源现状分析及可持续发展建议[J]. 中国矿业, 2015, 24(4): 5-8. doi: 10.3969/j.issn.1004-4051.2015.04.002
    [3]
    邵琼, 杜霞, 汪玲, 等. 铜镉渣的回收利用现状[J]. 湿法冶金, 2003, 22(2): 66-68. doi: 10.3969/j.issn.1009-2617.2003.02.002
    [4]
    KE J J, QIU R Y, CHEN C Y. Recovery of metal values from copper smelter flue dust[J]. Hydrometallurgy, 1984, 12(2): 217-224. doi: 10.1016/0304-386X(84)90035-5
    [5]
    LIU Y, ZHENG Y J, SUN Z M. Preparation of high purity cadmium with micro-spherical architecture from zinc flue dust[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 2073-2080. doi: 10.1016/S1003-6326(15)63817-1
    [6]
    邱定蕃, 柴立元. 有色冶金与环境保护[M]. 长沙: 中南大学出版社, 2015: 263-285.
    [7]
    ZHANG W J, CHE J Y, XIA L, et al. Efficient removal and recovery of arsenic from copper smelting flue dust by a roasting method: process optimization, phase transformation and mechanism investigation[J]. Journal of Hazardous Materials, 2021, 412: 125232. doi: 10.1016/j.jhazmat.2021.125232
    [8]
    李学鹏, 王娟, 常军, 等. 两段酸浸法浸出铜烟尘中的铜锌铟[J]. 矿冶工程, 2020, 40(1): 109-113. doi: 10.3969/j.issn.0253-6099.2020.01.026
    [9]
    郭亚光, 李东波, 梁帅表, 等. 铜熔炼渣综合回收铜铅锌基础研究[J]. 有色金属(冶炼部分), 2021(2): 27-34. doi: 10.3969/j.issn.1007-7545.2021.02.004
    [10]
    李衍林, 邓志敢, 朱应旭, 等. 含锗氧化锌烟尘浸出锌锗的研究[J]. 有色金属(冶炼部分), 2021(7): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202107009.htm
    [11]
    张文娟, 马保中, 王成彦. 含镉烟灰在酸性介质中的浸出行为及过程优化[J]. 中国有色金属学报, 2020, 30(1): 168-177. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202001019.htm
    [12]
    LIN X M, BURNS R C, LAWRANCE G A. Heavy metals in wastewater: the effect of electrolyte composition on the precipitation of cadmium(Ⅱ) using lime and magnesia[J]. Water, Air, and Soil Pollution, 2005, 165(1/2/3/4): 131-152.
    [13]
    GONÇALVES D C A, MAJUSTE D, CIMINELLI V S T. Improvements in the selective cementation of Cd and Ni/Co from zinc industrial electrolyte[J]. Hydrometallurgy, 2021, 201: 105572. doi: 10.1016/j.hydromet.2021.105572
    [14]
    BISWAL A, PADHY K, SARANGI C K, et al. The effects of magnafloc and zinc on electrowinning of cadmium in sulfate solutions[J]. Hydrometallurgy, 2012, 117/118: 13-17. doi: 10.1016/j.hydromet.2012.01.002
    [15]
    黄家全, 马永鹏, 徐斌, 等. 铜冶炼白烟尘综合回收研究[J]. 有色金属(冶炼部分), 2020(3): 17-22. doi: 10.3969/j.issn.1007-7545.2020.03.004
    [16]
    KU Y, WU M H, SHEN Y S. A study on the cadmium removal from aqueous solutions by zinc cementation[J]. Separation Science and Technology, 2002, 37(3): 571-590. doi: 10.1081/SS-120001448
    [17]
    张登高, 汪胜东, 赵峰, 等. 锌精矿氧压浸出液中有价金属富集研究[J]. 有色金属(冶炼部分), 2020(9): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202009001.htm
    [18]
    SAFARZADEH M S, BAFGHI M S, MORADKHANI D, et al. A review on hydrometallurgical extraction and recovery of cadmium from various resources[J]. Minerals Engineering, 2007, 20(3): 211-220. doi: 10.1016/j.mineng.2006.07.001
    [19]
    汪胜东, 赵峰, 冯林永, 等. 铜镉渣制备海绵镉工业试验及优化[J]. 有色金属(冶炼部分), 2019(9): 49-52. doi: 10.3969/j.issn.1007-7545.2019.09.008
    [20]
    BARTOLOZZI M, BRACCINI G, BONVINI S, et al. Hydrometallurgical recovery process for nickel-cadmium spent batteries[J]. Journal of Power Sources, 1995, 55(2): 247-250. doi: 10.1016/0378-7753(95)02180-O
    [21]
    YANG C C. Recovery of heavy metals from spent Ni-Cd batteries by a potentiostatic electrodeposition technique[J]. Journal of Power Sources, 2003, 115(2): 352-359. doi: 10.1016/S0378-7753(03)00015-6
    [22]
    许文杰, 虢清伟, 许振成, 等. 电沉积处理含镉废水的性能研究[J]. 环境工程, 2015, 33(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201501006.htm
    [23]
    张忠辉, 兰尧中, 陈锋. 从烟尘中回收镉的工艺研究现状[J]. 现代矿业, 2010, 26(9): 91-92. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201009053.htm
    [24]
    MUKONGO T, MAWEJA K, WA NGALU B, et al. Zinc recovery from the water-jacket furnace flue dusts by leaching and electrowinning in a SEC-CCS cell[J]. Hydrometallurgy, 2009, 97(1/2): 53-60.
    [25]
    SAFARZADEH M S, MORADKHANI D. The electrowinning of cadmium in the presence of zinc[J]. Hydrometallurgy, 2010, 105(1/2): 168-171.
    [26]
    OWAIS A. Effect of electrolyte characteristics on electrowinning of copper powder[J]. Journal of Applied Electrochemistry, 2009, 39(9): 1587-1595. doi: 10.1007/s10800-009-9845-y
    [27]
    WU Y, HU C, HUANG M, et al. Highly enhanced electrochemical responses of rutin by nanostructured Fe2O3/RGO composites[J]. Ionics, 2015, 21(5): 1427-1434.
    [28]
    LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101(1): 19-28.
    [29]
    SHARMA R A J K, JAT M S, JHANKAL K K, et al. Electrochemical determination of cardiovascular drug cilnidipine at glassy carbon electrode in pharmaceutical formulations[J]. Chemical Science, 2019, 8(3): 425-436.
    [30]
    BRAUNSTEIN J, ORR L, ALVAREZ-FUNES A R, et al. Polarographic diffusion coefficients of cadmium ion in aqueous nitrate melts[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1967, 15: 337-342.

Catalog

    Article Metrics

    Article views (223) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return