Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HAO Min, WANG Liang, LI Guoai, FENG Zhaohui, CHEN Junzhou, HE Weiwei. Phase evolution and mechanical properties of Al-2.8%Cu-1.35%Li-0.11%Zr alloy under thermal coupling[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 60-66. DOI: 10.13264/j.cnki.ysjskx.2022.01.008
Citation: HAO Min, WANG Liang, LI Guoai, FENG Zhaohui, CHEN Junzhou, HE Weiwei. Phase evolution and mechanical properties of Al-2.8%Cu-1.35%Li-0.11%Zr alloy under thermal coupling[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 60-66. DOI: 10.13264/j.cnki.ysjskx.2022.01.008

Phase evolution and mechanical properties of Al-2.8%Cu-1.35%Li-0.11%Zr alloy under thermal coupling

More Information
  • Received Date: April 13, 2021
  • Revised Date: July 02, 2021
  • Available Online: April 13, 2022
  • TEM, HAADF-STEM and tensile tests were applied to investigate the evolution law of precipitated phases and mechanical property of Al-2.8%Cu-1.35%Li-0.3%Mn-0.11%Zr alloy under artificial ageing and creep stress ageing. The results showed that the number of precipitated phases of the alloy increased significantly with the extension of the ageing time during both the artificial ageing and stress ageing of 160 MPa at 160 ℃ and the number of alloy T1 phrase in the state of stress ageing under the same ageing time, but its average diameter decreased by about 5~15 nm, mainly because the stress increased the dislocation density in the alloy, accordingly promoting the separation of precipitated phases. T1 phrase was not affected by the applied stress during the process of ageing separation analysis, but preferentially precipitated along a certain direction. There was no obvious stress orientation effect, which may be related to the larger shaped nuclei on the habitual T1 plane variant with critical stress values. Compared to artificial ageing, the yield strength and tensile strength of the alloy at room temperature increased after the stress ageing, and the effect on the yield strength is more significant in the early stage of the ageing.
  • [1]
    HOLMAN M C. Autoclave age forming large aluminum aircraft panels[J]. Journal of Mechanical Working Technology, 1989, 20: 477-488. doi: 10.1016/0378-3804(89)90055-7
    [2]
    ZHU A W, STARKE E A J. Materials aspects of age-forming of Al-xCu alloys[J]. Journal of Materials Processing Technology, 2001, 117(3): 354-358. doi: 10.1016/S0924-0136(01)00795-6
    [3]
    IDEM K, PEDDIESON J. Simulation of the age forming process[J]. Journal of Manufacturing Science and Engineering, 2005, 127(1): 165-172. doi: 10.1115/1.1828058
    [4]
    曾元松. 大型整体壁板成形技术[J]. 航空学报, 2008, 29(3): 721-727. doi: 10.3321/j.issn:1000-6893.2008.03.030
    [5]
    李勇, 李东升, 李小强. 大型复杂壁板构件塑性成形技术研究与应用进展[J]. 航空制造技术, 2020, 63(21): 37-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ202021003.htm
    [6]
    李劲风, 郑子樵, 李世晨, 等. 铝合金时效成形及时效成形铝合金[J]. 材料导报, 2006, 20(5): 101-103. doi: 10.3321/j.issn:1005-023X.2006.05.028
    [7]
    曾元松, 黄遐, 李志强. 先进喷丸成形技术及其应用与发展[J]. 塑性工程学报, 2006, 3(13): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC200603004.htm
    [8]
    RIOJA R J, LIU J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337. doi: 10.1007/s11661-012-1155-z
    [9]
    冯朝辉, 于娟, 郝敏, 等. 铝锂合金研究进展及发展趋势[J]. 航空材料学报, 2020, 40(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB202001002.htm
    [10]
    吴国华, 孙江伟, 张亮, 等. 铝锂合金材料研究应用现状与展望[J]. 有色金属科学与工程, 2019, 10(2): 31-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201902006.htm
    [11]
    TANG J G, YU B, ZHANG J, et al. Effects of pre-deformation mode and strain on creep aging bend-forming process of Al-Cu-Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(5): 1227-1237. doi: 10.1016/S1003-6326(20)65291-8
    [12]
    ZHANG J, WANG C, ZHANG Y, et al, Effects of creep aging upon Al-Cu-Li alloy: strength, toughness and microstructure[J]. Journal of Alloys and Compounds, 2018, 764: 452-459. doi: 10.1016/j.jallcom.2018.06.103
    [13]
    LI Y, YANG Y L, QI R, et al. Effect of initial temper on mechanical properties of creep-aged Al-Cu-Li alloy AA2050[C]. MATEC Web Conf, 2018, 190: 12006.
    [14]
    王珊珊. 2A23铝合金时效成形工艺及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [15]
    LI D Y, CHEN L Q. Computer simulation of stress-oriented nucleation and growth of θ' precipitates in Al-Cu alloys[J]. Acta Materialia, 1998, 46(8): 2573-2585. doi: 10.1016/S1359-6454(97)00478-3
    [16]
    ZHU A, STARKE E. Stress aging of Al-xCu alloys: experiments[J]. Acta Materialia, 2001, 49(12): 2285-2295. doi: 10.1016/S1359-6454(01)00119-7
    [17]
    BAKAVOS D, PRANGNELL P, DIF R. A Comparison of the effects of age forming on the precipitation behavior in 2xxx, 6xxx and 7xxx aerospace alloys[J]. Materials Forum, 2004, 28: 124-131.
    [18]
    RINGER S P, MUDDLE B C, POLMEAR I J. Effects of cold work on precipitation in A1-Cu-(Mg-Ag) and Al-Cu-Li-(Mg-Ag)alloys[J]. Metallurgical and Materials Transactions A, 1995, 26(7): 1659-1671. doi: 10.1007/BF02670753
    [19]
    鲁晓超. 2A97铝合金蠕变时效成形研究[D]. 长沙: 中南大学, 2014.
    [20]
    SKROTZKI B, SHIFLET G J, STARKE E A J. On the effect of stress on nucleation and growth of precipitates in an Al-Cu-Mg-Ag alloy[J]. Metallurgical & Materials Transactions A, 1996, 27: 3431-3444.
    [21]
    LI H Y, KANG W, LU X C. Effect of age-forming on microstructure, mechanical and corrosion properties of a novel Al-Li allo[J]. Journal of Alloys and Compounds, 2015, 640: 210-218. doi: 10.1016/j.jallcom.2015.03.212
    [22]
    MITTEMEIJER E J. Fundamentals of materials science: the microstructure-property relationship using metals as model systems[M]. New York: Springer, 2010.
    [23]
    ESWARA P N, GOKHALE A A, WANHILL R J H. Aluminum-lithium alloys: processing, properties, and applications[M]. Boston: Butterworth-Heinemann, 2014: 503-535.
    [24]
    KUMAR K S, BROWN S A, PICKENS J R. Microstructural evolution during aging of an AlCuLiAgMgZr alloy[J]. Acta Materialia, 1996, 44(5): 1899-1915.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]HU Wei, CHEN Jiqiang, MIAO Jiale, XING Ting, LIU Chao. Effects of pre-deformation on the precipitation behavior of Al-Cu-Li-(Mg-Ag) alloy during artificial aging[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 195-203. DOI: 10.13264/j.cnki.ysjskx.2024.02.006
    [3]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [4]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [5]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [6]LIU Yi-zheng, YANG Cui-Yan, LIU Zhi-jie. Effects of Al-Si alloy structure heredity on 6 463 aluminum alloy containing silicon phase[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 81-84. DOI: 10.13264/j.cnki.ysjskx.2013.04.014
    [7]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
    [8]XU Bao-he, WU Tian-tian, ZHONG Sheng-wen, ZHANG Qian. Comparative study of Si-doped Li[Li0.15Mn0.575Ni0.275]1-xSixO2 prepared by ion exchange[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 24-27. DOI: 10.13264/j.cnki.ysjskx.2012.02.003
    [9]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
  • Cited by

    Periodical cited type(8)

    1. 张明鲲,杨敏,王宇,赵祥,井德强. 热处理对高速列车用7005铝合金焊接接头应力腐蚀敏感性的影响. 金属热处理. 2023(08): 166-171 .
    2. 马思怡,张伟健,苏睿明,李广龙,曲迎东,李荣德. 7xxx系铝合金回归再时效的研究现状. 有色金属科学与工程. 2022(02): 38-50 . 本站查看
    3. 李晓含,贺嘉宁,苏睿明,杨玉萍,聂赛男,谭兵. 双级时效对7075合金应力腐蚀性能影响. 有色金属科学与工程. 2022(03): 69-75 . 本站查看
    4. 邱哲生,陈俊宇,李家奇,杨明,罗安民,赵艳波,严继康. 7075铝合金下摆臂模锻锻坯铸造工艺模拟仿真. 云南冶金. 2021(03): 86-90 .
    5. 邱哲生,陈俊宇,李家奇,杨明,罗安民,赵艳波,严继康. 7075铝合金下摆臂模锻锻坯铸造工艺模拟仿真. 云南冶金. 2021(04): 83-87 .
    6. 邱小云,王冀恒. 双重封闭对铝锂合金阳极氧化膜耐蚀性的影响. 兵器材料科学与工程. 2021(05): 120-125 .
    7. 陈蔚清,徐观明,崔紫依,余家甜,张雪辉,王春明. 超声滚压处理7B85合金的显微组织和力学性能. 有色金属科学与工程. 2021(06): 80-87 . 本站查看
    8. 陈昭,郑英,朱晨,王建辉,杨冠恒,林高用. 预拉伸对7075铝合金中厚板几何精度和力学性能的影响. 有色金属科学与工程. 2019(06): 40-47 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (159) PDF downloads (6) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return