Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DONG Yuehua, MAN Jingjin, WANG Zhigang, WANG Hang. Corrosion resistance prediction model of copper-nickel BFe10-1-1 alloy based on grain-boundary image[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 61-68. DOI: 10.13264/j.cnki.ysjskx.2021.05.008
Citation: DONG Yuehua, MAN Jingjin, WANG Zhigang, WANG Hang. Corrosion resistance prediction model of copper-nickel BFe10-1-1 alloy based on grain-boundary image[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 61-68. DOI: 10.13264/j.cnki.ysjskx.2021.05.008

Corrosion resistance prediction model of copper-nickel BFe10-1-1 alloy based on grain-boundary image

More Information
  • Received Date: April 04, 2021
  • Published Date: October 30, 2021
  • The grain-boundary characteristic distribution of copper-nickel BFe10-1-1 alloy determines its corrosion resistance. In order to adjust the grain-boundary characteristic distribution to improve its corrosion resistance, the grain-boundary characteristic distribution of BFe10-1-1 copper-nickel alloy with different Y content was analyzed by electron backscattered diffraction (EBSD). Based on the connectivity and triple junction of grain-boundary, a numerical calculation method of grain-boundary image features was proposed, and a corrosion resistance prediction model of copper-nickel BFe10-1-1 alloy was established. The characteristics of grain-boundary image and its effect on corrosion resistance of the alloy were studied by simulated seawater corrosion experiment. The results showed that the better the connectivity of grain-boundary was, the worse corrosion resistance of BFe10-1-1 copper-nickel alloy was. Too many triple junctions would increase the proportion of grain-boundary, which deteriorated the corrosion resistance of the alloy. Compared with the first two, the angle distribution in the triple junction had a greater impact on the corrosion resistance of the alloy. The accuracy of the corrosion resistance prediction model was 81.88 %, and the predicted values of the model agreed with the real values of corrosion resistance.
  • [1]
    甘春雷, 刘雪峰, 黄海友, 等. BFe10-1-1合金管材连续定向凝固制备工艺及组织力学性能[J]. 金属学报, 2010, 46(12): 1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201012021.htm
    [2]
    张胜华, 魏笔, 林高用, 等. 稀土对BFe10-1-1合金组织和性能的影响[J]. 中国材料科技与设备, 2007(4): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200706012.htm
    [3]
    张嘉凝. B10铜镍合金加工变形组织与腐蚀性能研究[D]. 北京: 北京有色金属研究总院, 2018.
    [4]
    徐兴莉, 李文兵. 铁白铜BFe10-1-1组织性能变化规律研究[J]. 中国金属通报, 2020(5): 83-84. doi: 10.3969/j.issn.1672-1667.2020.05.054
    [5]
    郝齐齐. 稀土Ce对白铜BFe10-1.5-1合金热变形行为的影响研究[D]. 赣州: 江西理工大学, 2019.
    [6]
    刘庆. 电子背散射衍射技术及其在材料科学中的应用[J]. 中国体视学与图像分析, 2005(4): 205-210. doi: 10.3969/j.issn.1007-1482.2005.04.004
    [7]
    BAN Y, ZHANG Y, JIA Y, et al. Effects of Cr addition on the constitutive equation and precipitated phases of copper alloy during hot deformation[J]. Materials & Design, 2020, 191: 1-11. http://www.sciencedirect.com/science/article/pii/S0264127520301477
    [8]
    LIU S, YANG K. Investigation on the bending deformation of the stainless steel fibers during knitting action by using image processing method[J]. Advanced Materials Research, 2012, 1510: 383-388. http://www.onacademic.com/detail/journal_1000038062085710_8f8a.html
    [9]
    魏杰, 王渠东, 叶兵, 等. 热处理对真空压铸NZ30K镁合金微观组织及力学性能的影响[J]. 材料研究学报, 2019, 33(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201901001.htm
    [10]
    吴伟, 吴剑剑, 张永华, 等. 基于数字图像处理的TC4钛合金金相组织定量分析[J]. 失效分析与预防, 2014, 9(2): 75-79. doi: 10.3969/j.issn.1673-6214.2014.02.004
    [11]
    李南驹, 徐英鸽, 张宇. 基于数字图像处理的钨合金塑性变形分析[J]. 热加工工艺, 2016, 45(24): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201624025.htm
    [12]
    穆志韬, 王国才, 朱做涛. 基于图像处理技术的铝合金腐蚀分形特征[J]. 海军航空工程学院学报, 2011, 26(1): 33-35. doi: 10.3969/j.issn.1673-1522.2011.01.008
    [13]
    王志成, 王浩, 黄海亮, 等. Ta含量对高性能镍基粉末高温合金高温拉伸性能的影响[J]. 材料研究学报, 2019, 33(5): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201905002.htm
    [14]
    WATANABE T. An approach to grain boundary design of strong and ductile polycrystals[J]. Res Mechanica, 1984, 11(1): 47-84. http://www.researchgate.net/publication/200653232_An_approach_to_grain_boundary_design_of_strong_and_ductile_polycrystals
    [15]
    刘廷光. Fe-Cr-Ni合金的三维晶界网络分布特征及其对应力腐蚀开裂扩展路径影响的研究[D]. 上海: 上海大学, 2015.
    [16]
    刘廷光, 夏爽, 白琴, 等. 316不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201806005.htm
    [17]
    赵漫, 柴林江, 袁珊珊, 等. FCC金属晶界特征分布优化及晶间腐蚀改善[J]. 重庆理工大学学报(自然科学), 2018, 32(1): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201801021.htm
    [18]
    张铭显. 316L(N)奥氏体不锈钢晶间腐蚀与晶界特征分布优化的研究[D]. 北京: 北京科技大学, 2017.
    [19]
    冯兴宇. 白铜BFe10-1-1合金晶界特征分布优化及耐蚀性能研究[D]. 赣州: 江西理工大学, 2018.
    [20]
    周永新. 卷积神经网络在合金耐蚀性预测中的应用研究[D]. 赣州: 江西理工大学, 2019.
    [21]
    张照超, 黄福祥, 阮海光, 等. 稀土元素Er对高锌铝合金组织和性能的影响[J]. 重庆理工大学学报(自然科学), 2017, 31(8): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201708014.htm
    [22]
    宋春梅. 钇微合金化B10铜镍合金组织与耐蚀性能研究[D]. 赣州: 江西理工大学, 2020.
    [23]
    许锋, 董振杰, 金言宣, 等. 稀土对ZL102合金组织的影响[J]. 兵器材料科学与工程, 1988(8): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG198808014.htm
    [24]
    曹楚南. 腐蚀电化学[M]. 北京: 化学工业出版社, 1990: 94.
    [25]
    SUBRAMANIAN V, CHANDRAMOHAN P, SRINIVASAN M P, et al. Corrosion of cupronickel alloy in permanganate under acidic condition[J]. Corrosion Science, 2007, 49(2): 620-636. doi: 10.1016/j.corsci.2006.06.001
    [26]
    曹中秋, 刘伟华, 郑志国, 等. 不同晶粒尺寸的Cu-40Ni合金在酸性介质中的耐蚀性能[J]. 中国有色金属学报, 2006(1): 170-175. doi: 10.3321/j.issn:1004-0609.2006.01.028
    [27]
    张子龙, 夏爽, 曹伟, 等. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J]. 金属学报, 2016, 52(3): 313-319. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201603008.htm
    [28]
    RAFAEL C G, RICHARD E W著, 阮秋琦, 阮宇智译. 数字图像处理[M](4版). 北京: 电子工业出版社, 2020: 46.
  • Related Articles

    [1]ZENG Senhua, ZHAO Yu, YE Tengfei, HE Ping, HAO Wenzheng. Deformation prediction of multi-step high and steep slope based on Bi-LSTM and SA fusion model[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 125-134. DOI: 10.13264/j.cnki.ysjskx.2025.01.014
    [2]SHENG Jianlong, QIAO Yu, WANG Ping, YU Donghua, ZHANG Yanwen. Study on risk prediction of mine karst collapse under the influence of groundwater based on LOF-SMOTE algorithm[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 372-380. DOI: 10.13264/j.cnki.ysjskx.2023.03.010
    [3]WANG Xiu, LIU Jiaxin, FAN Xinyue, ZHOU Zili, HAN Yang, CAO Zhongqiu, WANG Yan, ZHANG Ke, XIN Shigang. Studies on corrosion resistance of nanocrystalline Cu-Co alloy in H2SO4 solution of different concentrations[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 235-242. DOI: 10.13264/j.cnki.ysjskx.2023.02.010
    [4]GENG Yanglei, WANG Yiyong. Preparation of the Sn/ZrO2 coating and the effect of ZrO2 nanoparticle on the electrodeposition process[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 49-54. DOI: 10.13264/j.cnki.ysjskx.2022.03.007
    [5]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [6]LU Binghu, LI Dashuang, LI Linsui, FAN Xiaowei, LIU Yao, TAN Yuhui, TANG Yunzhi. Study on corrosion resistance of copper foil by surface silylation treatment[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 54-59. DOI: 10.13264/j.cnki.ysjskx.2019.01.009
    [7]LIU Chuan-li, LIU Xiao-sheng, LI Yan-yan. Deformation prediction model of metal mine tailings dam based on GEP[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 63-68. DOI: 10.13264/j.cnki.ysjskx.2013.06.006
    [8]PENG Guang-huai, GUO Xue-feng, ZHANG Xiao-lian, HAN Bao-jun, FANG Ling. Effects of Positive Pulse Voltage on the Morphology and Corrosion Resistance of Micro-arc Oxidation Film of Rare Magnesium Alloy[J]. Nonferrous Metals Science and Engineering, 2009, 23(4): 18-20.
    [9]LIU Hui-ping, WEN Rong-sheng, WEI Mei-hong. The Development of Corrosion Resistant Cast Aluminum Alloys[J]. Nonferrous Metals Science and Engineering, 2006, 20(1): 44-48.
    [10]HE Gui-chun, YI Hong. Application RBF Nervous Network to Prediction Model of Ore Dressing Data[J]. Nonferrous Metals Science and Engineering, 2002, 16(4): 44-46.

Catalog

    Article Metrics

    Article views (81) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return