Citation: | HUANG Wanfu, ZENG Xiangrong, HUANG Lijinhong, LI Xindong, CAO Mingshuai, LI Ruihan. Experimental study on treatment of copper ammonia wastewater from printed circuit board by MAP method and folded chlorination process[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 72-77. DOI: 10.13264/j.cnki.ysjskx.2020.01.012 |
[1] |
左小华, 屈媛.资源化回收工艺处理某电子公司高氨氮废水的探索[J].广东化工, 2018, 45(18):137-145. doi: 10.3969/j.issn.1007-1865.2018.18.064
|
[2] |
廖冬梅, 于萍, 邓佳杰, 等.螯合沉淀法处理电路板碱氨蚀刻废水[J].工业用水与废水, 2007(4):50-53. doi: 10.3969/j.issn.1009-2455.2007.04.015
|
[3] |
陈文松, 宁寻安.络合铜废水处理技术[J].水处理技术, 2008(6):1-3. http://d.old.wanfangdata.com.cn/Periodical/scljs200806001
|
[4] |
胡雪飞, 黄万抚.氨氮废水处理技术研究进展[J].金属矿山, 2017(8):199-203. doi: 10.3969/j.issn.1001-1250.2017.08.036
|
[5] |
朱冬梅, 方夕辉, 邱廷省, 等.稀土冶炼氨氮废水的处理技术现状[J].有色金属科学与工程, 2013, 4(2):90-95. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201304009
|
[6] |
曾青云, 薛丽燕, 曾繁钢, 等.氨氮废水处理技术的研究现状.有色金属科学与工程, 2018, 9(4):83-88. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201804014
|
[7] |
刘小澜.化学沉淀法处理焦化高浓度氨氮废水技术与工业应用探讨[D].长沙: 湖南大学, 2004.
|
[8] |
ZHU L, GUO Z Y, HUA X Y, et al. Ammonia nitrogen removal from chlor-alkali chemical industry wastewater by magnesium ammonium phosphate precipitation method[J]. Advanced Materials Research, 2012, 573/574: 1096-1100. doi: 10.4028/www.scientific.net/AMR.573-574.1096
|
[9] |
CHEN Y Q, TANG J J, LI W L, et al. Thermal decomposition of magnesium ammonium phosphate and adsorption properties of its pyrolysis products toward ammonia nitrogen[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2): 497-503. doi: 10.1016/S1003-6326(15)63630-5
|
[10] |
罗仙平, 杨晶, 王春英, 等.P25TiO2光催化降解中低浓度氨氮废水[J].有色金属科学与工程, 2015, 6(3):100-104. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201503019
|
[11] |
曹明帅.MAP法和折点氯化法联合工艺从印刷电路处理废水中回收铜氨的研究[D].赣州: 江西理工大学, 2019.
|
[12] |
黄万抚, 胡昌顺, 曹明帅, 等.难处理含铜废水处理技术研究[J].应用化工, 2018, 47(10):2248-2253. doi: 10.3969/j.issn.1671-3206.2018.10.047
|
[13] |
江洪龙, 俞马宏.Fenton-铁氧体法联合工艺处理络合电镀废水[J].电镀与涂饰, 2013, 32(4):43-47. doi: 10.3969/j.issn.1004-227X.2013.04.012
|
[14] |
刘新秀.电镀含铜模拟废水破络除铜技术研究[D].上海: 华东理工大学, 2014.
|
[15] |
吴梦, 张大超, 徐师, 等.废水除磷工艺技术研究进展[J].有色金属科学与工程, 2019, 10(2):97-103. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201902014
|
[16] |
罗宇智, 沈明伟, 李博.化学沉淀—折点氯化法处理稀土氨氮废水[J].有色金属(冶炼部分), 2015(7):63-65. doi: 10.3969/j.issn.1007-7545.2015.07.017
|
[17] |
廉今兰, 金星.鸟粪石沉淀法回收污泥碱性发酵液中氮磷的研究[J].环境保护与循环经济, 2015, 35(12):30-32. doi: 10.3969/j.issn.1674-1021.2015.12.011
|
[18] |
HUANG H M, ZHANG D D, WANG W J, et al. Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources[J]. Science of The Total Environment, 2019, 655: 211-219. doi: 10.1016/j.scitotenv.2018.11.259
|
[19] |
HUANG H M, XIAO D A, ZHANG Q R, et al. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources[J]. Journal of Environmental Management, 2014, 145:191-198. doi: 10.1016/j.jenvman.2014.06.021
|
[20] |
胡小兵, 赵鑫, 刘孔辉, 等.次氯酸钠氧化法去除电镀废水中的氨氮[J].电镀与涂饰, 2014(5):214-216. doi: 10.3969/j.issn.1004-227X.2014.05.014
|
[21] |
余华东, 徐伟, 黄聪聪, 等.次氯酸钠处理电镀废水中氨氮及其ORP控制方式的研究[J].工业用水与废水, 2017, 48(5):15-18. doi: 10.3969/j.issn.1009-2455.2017.05.004
|
[22] |
胡亮, 高联欢.折点氯化法去除铅锌冶炼废水中氨氮研究[C]//第十六届中国科协年会论文集.北京: 中国科学技术出版社, 2014.
|
[1] | HUANG Jinchao, GUO Ziting, XIAO Qingmei, ZHONG Shengwen. Effect of binary composite conductive agent with graphene and carbon nanotube on performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 355-362. DOI: 10.13264/j.cnki.ysjskx.2023.03.008 |
[2] | XIA Dingfeng, ZHOU Miaomiao, GUO Qiankun, HU Shun, ZOU Jin, ZHONG Shengwen. Effect of graphene composite conductor on kinetic and electrochemical properties of LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 35-42. DOI: 10.13264/j.cnki.ysjskx.2022.03.005 |
[3] | RAO Xianfa, LI Baobao, LOU Yitao, HUANG Jinchao, WU Tingting, QIU Yuping, WANG Jiang, SHI Xuanbo, ZHONG Shengwen. Preparation and performance comparison of single crystal LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 42-50. DOI: 10.13264/j.cnki.ysjskx.2021.04.006 |
[4] | ZHONG Caini, CHEN Zheqin, LU Yanhua, LIU Jiaming, XIA Shubiao. A study on the synthesis and electrochemical properties of CuFe2O4 cubes as anode material for lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 59-64. DOI: 10.13264/j.cnki.ysjskx.2020.03.008 |
[5] | LAN Chaobo, ZHANG Qian, QIU Shitao, MENG Fuhai, WU Lijue, ZHONG Shengwen. Study on high-voltage cathode material LiNi0.5Co0.2Mn0.3O2[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 72-77. DOI: 10.13264/j.cnki.ysjskx.2019.04.012 |
[6] | HU Wei, ZHONG Shengwen, LI Xiaoyan, HUANG Jingbiao, PENG Kangchun, RAO Xianfa, QIU Shitao. The study of synthetize and electrochemical properties in LiNi0.55Co0.15Mn0.30O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 54-57. DOI: 10.13264/j.cnki.ysjskx.2019.03.009 |
[7] | LV Qingwen, YIN Congling, ZHONG Shengwen, DING Nengwen, LAI Jianghong, LUO Chuiyi, FAN Fengsong. Synthesis and characterization of LiNi0.6Co0.1Mn0.3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 50-54. DOI: 10.13264/j.cnki.ysjskx.2016.04.009 |
[8] | CHEN Jun, MEI Wenjie, ZENG Min, GUO Jinkang, LIU Defang, ZHONG Shengwen. Synthesis and performance research of carboxyl substituted nickel phthalocyanine as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 45-51. DOI: 10.13264/j.cnki.ysjskx.2015.05.009 |
[9] | HU Wei, ZHONG Shengwen, HUANG Bing. Optimizing electrochemical properties in Li-rich Mn-based cathode material[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 32-36. DOI: 10.13264/j.cnki.ysjskx.2014.04.007 |
[10] | ZHANG Sheng-wen, WANG Yu′e, ZHANG Qian, QIAO Xiao-ni. Synthesis and Electrochemical Properties of LiNi0.5Mn0.5O2 as Cathode Material for AA Lithium Ion Batteries[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 11-15. DOI: 10.13264/j.cnki.ysjskx.2010.06.016 |