Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HE Yunlong, XU Ruidong, HE Shiwei, ZHU Yun, SHEN Qingfeng, CHEN Hansen, LI Kuo. Research on bismuth extraction from alkaline oxidative leaching residues of bismuth-rich lead anode slime by casting and electrolysis[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 41-48. DOI: 10.13264/j.cnki.ysjskx.2019.01.007
Citation: HE Yunlong, XU Ruidong, HE Shiwei, ZHU Yun, SHEN Qingfeng, CHEN Hansen, LI Kuo. Research on bismuth extraction from alkaline oxidative leaching residues of bismuth-rich lead anode slime by casting and electrolysis[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 41-48. DOI: 10.13264/j.cnki.ysjskx.2019.01.007

Research on bismuth extraction from alkaline oxidative leaching residues of bismuth-rich lead anode slime by casting and electrolysis

More Information
  • Received Date: November 26, 2018
  • Published Date: February 27, 2019
  • Alkaline oxidative leaching residues of bismuth-rich lead anode slime were adopted to extract bismuth and enrich gold and silver by using carbothermal reduction casting and electrolysis process. Thermodynamics analysis indicates that the initial carbothermal reduction temperature of metal oxides from low to high are Cu, Bi, Pb, Sb, Sn. Bismuth oxides can obtain enough reduction thermodynamic driving force when the temperature excesses 800 ℃. The optimum technical conditions are as follows: temperature, 800 ℃; carbon addition, 5 % of the mass of leaching residue; Na2B4O7 addition, 15 % of the mass of the leaching residue; time duration, 1.5 h. Under such conditions the average contents of bismuth, gold and silver were 84.29 %, 39.62 g/t and 6519 g/t, respectively. Compared with the raw lead anode slime, the content of gold and silver were enriched 1.8 times respectively. Kilogram-scale crude bismuth alloys were electrolyzed in HCl-NaCl-BiCl3 system as anodic plates for 24 h, 48 h, 72 h, 112 h. The results indicated that the content of bismuth in the cathodal products exceeded 98 %, the current efficiency, 96 %, and the average content of gold and silver content were 222.94 g/t, 34287.6 g/t, respectively. Compared with the raw lead anode slime, the content of gold and silver were enriched 9.54 times and 10.13 times, respectively.
  • [1]
    HAVUZ T, DÖNMEZ B, ÇELIK C. Optimization of removal of lead from bearing-lead anode slime[J]. Journal of Industrial & Engineering Chemistry, 2010, 16(3):355-358. http://www.sciencedirect.com/science/article/pii/S1226086X10000389
    [2]
    FERNÁNDEZ M A, SEGARRA M, ESPIELL F. Selective leaching of arsenic and antimony contained in the anode slimes from copper refining[J]. Hydrometallurgy, 1996, 41(2/3):255-267. doi: 10.1016-0304-386X(95)00061-K/
    [3]
    HAN J, LIANG C, LIU W, et al. Pretreatment of tin anode slime using alkaline pressure oxidative leaching[J]. Separation and Purification Technology, 2017, 174(1): 389-395. http://www.sciencedirect.com/science/article/pii/S1383586616309996
    [4]
    LUDVIGSSON B, LARSSON S. Anode slimes treatment: the boliden experience[J]. Journal of the Minerals, Metals and Materials Society, 2003, 55(4):41-44. doi: 10.1007/s11837-003-0087-x
    [5]
    王光忠, 陈海军.铅阳极泥富氧底吹熔炼实践[J].湖南有色金属, 2012, 28(1):37-39. doi: 10.3969/j.issn.1003-5540.2012.01.011
    [6]
    周洪武.铅阳极泥冶炼技术简评和电热连续熔炼的可行性[J].有色冶炼, 2002, 31(4):7-11. doi: 10.3969/j.issn.1672-6103.2002.04.002
    [7]
    刘吉波, 吴文花.某铅锌冶炼厂铅阳极泥湿法预处理新工艺[J], 有色金属工程, 2014, 4(5):38-39. doi: 10.3969/j.issn.2095-1744.2014.05.008
    [8]
    周云峰, 王少龙, 李昌林, 等.铅阳极泥脱砷预处理研究现状与进展[J].新技术新工艺, 2011(10): 67-69. doi: 10.3969/j.issn.1003-5311.2011.10.024
    [9]
    QIU K Q, LIN D Q, YANG X L. Vacuum evaporation technology for treating antimony-rich anode slime[J]. Journal of the Minerals, Metals and Materials Society, 2012, 64(11):1321-1325. doi: 10.1007/s11837-012-0458-2
    [10]
    LI L, TIAN Y, LIU D C, et al. Pretreatment of lead anode slime with low silver by vacuum distillation for concentrating silver[J]. Journal of Central South University of Technology, 2013, 20(3):615-621. doi: 10.1007/s11771-013-1526-7
    [11]
    LIN D Q, QIU K Q. Removing arsenic from anode slime by vacuum dynamic evaporation and vacuum dynamic flash reduction[J]. Vacuum, 2012, 86(8):1155-1160. doi: 10.1016/j.vacuum.2011.10.023
    [12]
    郭瑞.全湿法处理含铋铅阳极泥工艺及铁片置换海绵铋动力学研究[D].长沙: 中南大学, 2013.
    [13]
    支波.高锑铅阳极泥制备五氯化锑及其水解过程的研究[D].杭州: 浙江工业大学, 2006.
    [14]
    陈进中.高锑铅阳极泥制备三氯化锑和锑白研究[D].长沙: 中南大学, 2012.
    [15]
    CAO H Z, CHEN J Z, YUAN H J, et al. Preparation of pure SbCl3 from lead anode slime bearing high antimony and low silver[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(12): 2397-2403. doi: 10.1016/S1003-6326(10)60661-9
    [16]
    杨学林, 丘克强, 张露露, 等.利用高锑铅阳极泥制备三氧化二锑的工艺研究[J].现代化工, 2004, 4(2):44-46. doi: 10.3321/j.issn:0253-4320.2004.02.013
    [17]
    何云龙, 徐瑞东, 何世伟, 等.铅阳极泥处理技术的研究进展[J].有色金属科学与工程, 2017, 8(5): 40-51. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201705003
    [18]
    叶大伦.胡建华.实用无机物热力学数据手册[M]. 2版.北京:冶金工业出版社, 2002.
    [19]
    张作良.高铝铁矿石气基直接还原基础研究[D].沈阳: 东北大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10145-1016011368.htm
    [20]
    郭宇峰.钒钛磁铁矿固态还原强化及综合利用研究[D].长沙: 中南大学, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1328515
    [21]
    黄丹.钒钛磁铁矿综合利用新流程及其比较研究[D].长沙: 中南大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2200088
    [22]
    戴永年.二元合金相图集[M].北京:科学出版社, 2009.
    [23]
    王传龙.铅渣中有价金属铜铁铅锌锑综合回收工艺及机理研究[D].北京: 北京科技大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10008-1017132167.htm
  • Related Articles

    [1]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [2]ZHU Da-chang, YAN Zhi-min, CUI Xiang-fu, LI Pei. The position analysis and control simulation of 3-RPS parallel robot[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 95-100. DOI: 10.13264/j.cnki.ysjskx.2012.01.005
    [3]WANG Ya-jie. The Application of New Hoisting Instruments in the Upside -down Mounting of Large Precipitation Tanks[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 174-178.
    [4]HU Shi-bo. On the Installation of Large-scaled Steam Drier[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 45-48.
    [5]DU Wen. Function of Safety Testing of Mine Equipments in Safety Production Management[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 39-41.
    [6]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
    [7]ZHAO Yu-dong. New Development of Trackless Excavating Equipments in Foreign Underground Mines[J]. Nonferrous Metals Science and Engineering, 2005, 19(3): 33-36.
    [8]WAN Shi-yi. Application of large Emptied Area Mining Method in Deep Deposit[J]. Nonferrous Metals Science and Engineering, 2005, 19(1): 26-28.
    [9]ZHAO Yu-dong. Emission Pollution and Control Technology of the Diesel Equipment of Underground Mine[J]. Nonferrous Metals Science and Engineering, 2002, 16(1): 19-22.
    [10]ZHAO Yu-dong. The development history of drilling equipment of underground mine[J]. Nonferrous Metals Science and Engineering, 2001, 15(2): 7-10.

Catalog

    Article Metrics

    Article views (144) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return