Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LI Yinga, HUANG Yuanchunb, REN Xianweib, WANG Yejunb. Effect of pre-aging treatment on mechanical properties and precipitation of 6016 alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 40-46, 101. DOI: 10.13264/j.cnki.ysjskx.2018.04.007
Citation: LI Yinga, HUANG Yuanchunb, REN Xianweib, WANG Yejunb. Effect of pre-aging treatment on mechanical properties and precipitation of 6016 alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 40-46, 101. DOI: 10.13264/j.cnki.ysjskx.2018.04.007

Effect of pre-aging treatment on mechanical properties and precipitation of 6016 alloy

More Information
  • Received Date: May 15, 2018
  • Published Date: August 30, 2018
  • The effects of pre-aging treatment on the mechanical properties and the precipitation behavior of 6016 alloy were studied by means of first-principles calculations, hardness tests, tensile tests, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Studies show that pre-aging treatment can inhibit the negative effects of natural aging. What′s more, pre-aging treatment of 110 ℃ × 10 min can significantly inhibit the natural aging and maintained good formability (σ0.2: 109.65 MPa) of sheet; Pre-aging can improve paint baking response and pre-aging treatment of 110 ℃ × 10 min showed the best paint bake performance (σ0.2: 212.29 MPa). But paint baking response decreased with the increase of pre-aging time and temperature; Different pre-aging treatment didn′t change the composition of the phases in the matrix which mainly were α-Al and Mg2Si.In addition, the Mg2Si phase increased slightly with the increase of time and temperature; More needle-like β" phases precipitated and the mechanical properties were better after paint baking treatment with the pre-aged treatment sample, which was in accordance with the physicochemical properties of the β sequence calculated by the first-principle calculation.
  • [1]
    MILLER W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science and Engineering A, 2000, 280(1): 37-49. doi: 10.1016-S0921-5093(99)00653-X/
    [2]
    DING L, JIA Z, LIU Y, et al. The influence of Cu addition and pre-straining on the natural aging and bake hardening response of Al-Mg-Si alloys[J]. Journal of Alloys & Compounds, 2016, 688: 362-367. http://www.sciencedirect.com/science/article/pii/S0925838816320990
    [3]
    MAN J, JING L, JIE S G. The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy[J]. Journal of Alloys & Compounds, 2007, 437(1): 146-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211711963
    [4]
    LIANG W J, ROMETSCH P A, CAO L F, et al. General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu[J]. Corrosion Science, 2013, 76(10): 119-128. http://www.sciencedirect.com/science/article/pii/S0010938X13002783
    [5]
    YAMADA K, SATO T, KAMIO A. Effects of quenching conditions on two-step aging behavior of Al-Mg-Si alloys[J]. Materials Science Forum, 2000, 331-337: 669-674. doi: 10.4028/www.scientific.net/MSF.331-337
    [6]
    RøYSET J, STENE T, SATER J A, et al. The Effect of intermediate storage temperature and time on the age hardening response of Al-Mg-Si alloys[J]. Materials Science Forum, 2006, 519: 239-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231267500
    [7]
    MARTINSEN F A, EHLERS F J H, TORSATER M, et al. Reversal of the negative natural aging effect in Al-Mg-Si alloys[J]. Acta Materialia, 2012, 60(17): 6091-6101. doi: 10.1016/j.actamat.2012.07.047
    [8]
    CHANG C S, WIELER I, WANDERKA N, et al. Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at% Mg-0.38at% Si alloy[J]. Ultramicroscopy, 2009, 109(5): 585-592. doi: 10.1016/j.ultramic.2008.12.002
    [9]
    宋满新, 邓运来, 陈龙, 等. Ge对汽车车身板用Al-Mg-Si系铝合金组织和性能的影响[J].热加工工艺, 2014(6): 76-80. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SJGY201406025&dbname=CJFD&dbcode=CJFQ
    [10]
    RAVI C, WOLVERTON C. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates[J]. Acta Materialia, 2004, 52(14): 4213-4227. doi: 10.1016/j.actamat.2004.05.037
    [11]
    TORSATER M, LEFEBVRE W, MARIOARA C D, et al. Study of intergrown Land Q' precipitates in Al-Mg-Si-Cu alloys[J]. Scripta Materialia, 2011, 64(9): 817-820. http://www.sciencedirect.com/science/article/pii/S1359646211000091?via%3Dihub
    [12]
    ARUGA Y, KOZUKA M, TAKAKI Y, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy[J]. Scripta Materialia, 2016, 116: 82-86. doi: 10.1016/j.scriptamat.2016.01.019
    [13]
    ARUGA Y, KOZUKA M, TAKAKI Y, et al. Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy[J]. Materials Science & Engineering A, 2015, 631: 86-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234447226
    [14]
    TAKAKI Y, MASUDA T, KOBAYASHI E, et al. Effects of natural aging on bake hardening behavior of Al-Mg-Si alloys with multi-step aging process[J]. Materials Transactions, 2014, 55(8): 1257-1265. doi: 10.2320/matertrans.L-M2014827
    [15]
    纪艳丽, 郭富安, 潘琰峰, 等.预时效制度对Al-Mg-Si-Cu合金组织与性能的影响[J].材料热处理学报, 2010(02): 85-89. http://d.old.wanfangdata.com.cn/Periodical/jsrclxb201002018
    [16]
    郭富安, 曹零勇. 《材料热处理学报》2017年征订启事[J].金属热处理, 2016(10): 20. http://d.old.wanfangdata.com.cn/Periodical/jsrclxb201612032
    [17]
    徐芬, 王晶莉, 张宗鹏, 等.预应变与预时效对6101导电铝合金组织与性能的影响[J].有色金属科学与工程, 2016, 7(1): 34-40. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201601008
    [18]
    任玉艳, 刘桐宇, 李英民. Mg2Si金属间化合物的结构稳定性, 热力学和力学性能的第一性原理计算[J].中国科学:物理学·力学·天文学, 2016, 46(8): 84611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016082900022874
    [19]
    MATSUDA K, SAKAGUCHI Y, MIYATA Y, et al. Precipitation sequence of various kinds of metastable phases in Al-1.0mass% Mg2Si-0.4mass% Si alloy[J]. Journal of Materials Science, 2000, 35(1): 179-189. doi: 10.1023/A:1004769305736
    [20]
    VISSERS R, HUIS M A V, JANSEN J, et al. The crystal structure of the β' phase in Al-Mg-Si alloys[J]. Acta Materialia, 2007, 55(11): 3815-3823. http://www.sciencedirect.com/science/article/pii/S1359645407001796#!
    [21]
    RAVI C, WOLVERTON C. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates[J]. Acta Materialia, 2004, 52(14): 4213-4227. doi: 10.1016/j.actamat.2004.05.037
    [22]
    JACOBS M H. The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy[J]. Philosophical Magazine, 1972, 26(1): 1-13. doi: 10.1080/14786437208221015
    [23]
    BAI X, JIA-HAO L I, DAI Y, et al. Linear correlations of formation enthalpies/bulk modules and atomic volumes observed in Pt-Zr compounds by ab initio calculation[J].中国有色金属学报:英文版, 2013, 23(12): 3704-3713. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb-e201312027
    [24]
    王战华. 固溶和时效对三种Mg-GD-Y合金组织与性能的影响[D]. 西安: 西安工业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10702-1015343584.htm
    [25]
    MIAO W F, LAUGHLIN D E. Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022[J]. Metallurgical & Materials Transactions A, 2000, 31(2): 361-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028282272
    [26]
    HIRTH S M, MARSHALL G J, COURT S A, et al. Effect of Si on the aging behaviour and formability of alloys based on AA6016[J]. Materials Science & Engineering A, 2001, 319/320/321(12): 452-456. doi: 10.1002/9781118787601.ch9/references
    [27]
    YAMADA K, SATO T, KAMIO A. Effects of quenching conditions on two-step aging behavior of Al-Mg-Si Alloys[J]. Materials Science Forum, 2000, 331-337: 669-674. doi: 10.4028/www.scientific.net/MSF.331-337
    [28]
    BIROL Y. Pre-aging to improve bake hardening in a twin-roll cast Al-Mg-Si alloy[J]. Materials Science and Engineering: A, 2005, 391(1/2): 175-180. doi: 10.1016-j.msea.2004.08.069/
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [5]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [6]XU Chunting, GUO Fanghe, ZHANG Hui, WU Ying, WANG Richu, CAI Zhiyong. Microstructure and properties of spray deposited Al-12Si-0.6Mg alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 43-49. DOI: 10.13264/j.cnki.ysjskx.2021.02.006
    [7]LUO Haiyun, KUANG Quanbo, WANG Richu. Microstructure and mechanical properties of spray deposited Al-Mg-Li Alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 66-71. DOI: 10.13264/j.cnki.ysjskx.2019.04.011
    [8]HUANG Zhigang, ZHAO Fei, WANG Richu, ZHANG Chun, CAI Zhiyong. Effects of microalloying on the microstructure and properties of high-silicon aluminum alloy for electronic packaging[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 22-28. DOI: 10.13264/j.cnki.ysjskx.2018.03.005
    [9]WANG Jingli, YUE Lijuan, YAN Yong, WU Wenbo, XUN Jian, LIN Gaoyong. Effects of low temperature aging on the microstructure and properties of QBe2.0 alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 17-21. DOI: 10.13264/j.cnki.ysjskx.2018.03.004
    [10]WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009
  • Cited by

    Periodical cited type(4)

    1. 钟明,赖昀昊,古文丽,马乾康,邓同生. Sc对6061合金组织与性能的影响. 特种铸造及有色合金. 2024(01): 59-63 .
    2. 任欣,任杰,折洁,张丽娇,马俊成,夏少华,赵明元,祝弘滨. 激光熔覆修复ZL101A铝合金热处理工艺及组织性能研究. 轨道交通材料. 2024(06): 16-22 .
    3. 朱玉涛. Mg含量对6016合金折弯性能的影响. 特种铸造及有色合金. 2020(12): 1334-1338 .
    4. 赵芳,胡皓,荣伟,陆宏韬,刘旭东. 6061铝合金挤压型材性能影响因素分析. 有色金属材料与工程. 2019(06): 21-25 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (131) PDF downloads (7) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return